Etude sur l'entretien des routes de la Boucle Centre-Artibonite

HAITI

MANUEL D’EXPLOITATION ET D’ENTRETIEN ROUTIER

Juin 2016
Version 0

en association avec
Informations relatives au document

Informations générales

<table>
<thead>
<tr>
<th>Auteur(s)</th>
<th>KUPFERLE Christelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projet</td>
<td>Etude sur l'entretien des routes de la Boucle Centre-Artibonite - HAITI</td>
</tr>
<tr>
<td>Titre</td>
<td>Manuel d'exploitation et d'entretien routier</td>
</tr>
<tr>
<td>Date</td>
<td>Juin 2016</td>
</tr>
<tr>
<td>Version</td>
<td>Version 0</td>
</tr>
<tr>
<td>Référence</td>
<td>KG21K13FMU</td>
</tr>
</tbody>
</table>

Historique des modifications

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Rédigé par</th>
<th>Visé par</th>
<th>Approuvé par</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0</td>
<td>Juin 2016</td>
<td>William BEUZEBOC</td>
<td>Christelle KUPFERLE</td>
<td>Frédéric MOURY</td>
</tr>
</tbody>
</table>

Destinataires

<table>
<thead>
<tr>
<th>Nom</th>
<th>Entité</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE LANDSHEER Michael</td>
<td>UTE /MEF</td>
<td></td>
</tr>
<tr>
<td>EGALITE Erlande</td>
<td>UTE</td>
<td></td>
</tr>
<tr>
<td>JOASSAINT Pierre Michel</td>
<td>UTE</td>
<td></td>
</tr>
<tr>
<td>GATEAU Abraham</td>
<td>UTE</td>
<td></td>
</tr>
<tr>
<td>RAYNAL Marc</td>
<td>CIAT</td>
<td></td>
</tr>
<tr>
<td>LÉGER Robinson Jonas</td>
<td>UCE/MTPTC</td>
<td></td>
</tr>
<tr>
<td>CLERJUSTE Jocelyn</td>
<td>UCE/MTPTC</td>
<td></td>
</tr>
<tr>
<td>EMILE Rodolphe G</td>
<td>MTPTC</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

1. Objectifs du Manuel ... 5
 1.1. Introduction ... 5
 Contexte ... 5
 Pourquoi un manuel d’exploitation et d’entretien? 5
 Pour qui? ... 5
 1.2. Présentation des fiches ... 6
 Les thématiques ... 6
 Structure des fiches .. 6
 Liste de fiches .. 7

2. Classification du réseau .. 8

3. Fiches Actions Chaussées revêtues 14
 3.1. Liste des fiches Chaussées revêtues 14
 Sommaire ... 14
 3.2. Référentiels .. 14
 3.3. Profil en travers type .. 14
 3.4. Les pathologies .. 15
 3.4.1. Les déformations ... 15
 3.4.2. Les fissures .. 18
 3.5. Chaussées - Fiches actions ... 22
 Objectifs ... 22

4. Fiches Actions Chaussées non-revêtu e s 41
 4.1. Liste des fiches Chaussées non-revêtu e s 41
 Sommaire ... 41
 4.2. Les pathologies .. 41
 4.2.1. Les déformations ... 41
 4.3. Chaussées non-revêtu e s - Fiches actions 44

5. Les Fiches Actions - Dépendances 74
 5.1. Liste des fiches Dépendances ... 74
 Sommaire ... 74
 5.2. Dépendances - Fiches actions 75

6. Les Fiches Actions – Assainissement 96
 6.1. Liste des fiches Assainissement 96
 Sommaire ... 96
 Référentiel ... 96
 Les dégradations du réseau d’assainissement 96
Objectifs du Manuel

6.2. Assainissement- Fiches actions ... 98

7. Fiches Actions – Ouvrage d’Art ... 120

7.1. Liste des fiches Ouvrage d’Art ... 120
 Sommaire .. 120

7.2. Généralités ... 120
 Politique de gestion des ouvrages d’art ... 120
 Buts poursuivis par la politique de gestion des ouvrages d’art .. 120
 Périmètre .. 121

7.3. Pathologies .. 121

7.4. Ouvrage d’art - Fiches actions ... 123

8. Les Fiches Actions - Exploitation .. 165

8.1. Liste des fiches Exploitation ... 165
 Sommaire .. 165

8.2. Exploitation - Fiches actions ... 166
1. Objectifs du Manuel

1.1. Introduction

Contexte

Le présent manuel d’exploitation et d’entretien routier, applicable au réseau routier du territoire de la Boucle Centre-Artibonite (BCA), a été élaboré avec le souci de donner, aux services en charge de l’exploitation et de l’entretien, un outil prenant en compte les différentes techniques routières adaptées au réseau de la BCA et d’harmoniser les pratiques dans ce domaine sur l’ensemble du Territoire, afin de faciliter le travail des gestionnaires.

Pourquoi un manuel d’exploitation et d’entretien ?

La mise en place d’un manuel d’exploitation et d’entretien routier doit permettre :

- une meilleure homogénéité des pratiques au sein du Territoire de la BCA ;
- une approche rationnelle des solutions en les adaptant aux stricts besoins ;
- une optimisation technique des solutions ;
- la définition des règles de « bon usage » ;
- la prise en compte du Développement Durable ;
- Le présent manuel donne les grandes lignes de la procédure à suivre pour réduire les inconvénients des travaux et assurer la sécurité des usagers de la route et des travailleurs.

Pour qui ?

Ce manuel s’adresse :

- aux contrôleurs, patrouilleurs, agents en charge de la gestion du réseau routier;
- aux chefs de service ;
- à l’ensemble des concepteurs (chef de projet, ingénieurs, dessinateurs projeteurs) ;
- aux partenaires et aux intervenants externes.
1.2. Présentation des fiches

Les thématiques

Les fiches actions sont élaborées en fonction des thématiques suivantes :

- chaussées revêtues ;
- chaussées non-revêtues
- dépendances ;
- assainissement ;
- ouvrages d’art ;
- exploitation.

Chaque thématique comprend plusieurs fiches, correspondant à différentes opérations ou interventions. En amont des thématiques, un volet "pathologie" a été intégré, permettant de définir un vocabulaire commun pour la définition des désordres.

Structure des fiches

Les fiches sont conçues selon la structure suivante :

<table>
<thead>
<tr>
<th>Les paragraphes</th>
<th>Finalité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectifs</td>
<td>Définition sommaire de l'intervention, précisant les objectifs attendus</td>
</tr>
<tr>
<td>Références</td>
<td>Liste de références générales (normes, guides)</td>
</tr>
<tr>
<td>Méthode</td>
<td>Définition sommaire de l'intervention (lieux, période de l’année)</td>
</tr>
<tr>
<td>Moyens</td>
<td>Détails des moyens humains et matériels</td>
</tr>
<tr>
<td>Bon usage</td>
<td>Préconisations ou prescriptions pratiques</td>
</tr>
<tr>
<td>Fréquence d’intervention</td>
<td>Définition de la fréquence des interventions</td>
</tr>
<tr>
<td>Surveillance-Détention</td>
<td>Méthode de détection et prise en charge</td>
</tr>
<tr>
<td>Sécurité</td>
<td>Sécurité des usagers et des agents du Département (ou des entreprises intervenant pour son compte) sur les routes départementales</td>
</tr>
<tr>
<td>Développement durable</td>
<td>Les bonnes pratiques en matière de protection de l'environnement</td>
</tr>
</tbody>
</table>
Liste de fiches

Les fiches présentées dans ce manuel sont détaillées dans le tableau suivant :

<table>
<thead>
<tr>
<th>Les thématiques</th>
<th>N° Fiche</th>
<th>Intitulé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaussées revêtues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entretien courant</td>
<td>N°1.1</td>
<td>Emplois partiels aux enrobés / Bouchage nid de poule</td>
</tr>
<tr>
<td></td>
<td>N°1.2</td>
<td>Purges</td>
</tr>
<tr>
<td></td>
<td>N°1.3</td>
<td>Pontage fissures</td>
</tr>
<tr>
<td></td>
<td>N°1.4</td>
<td>Emplois partiels à l’émulsion</td>
</tr>
<tr>
<td></td>
<td>N°1.5</td>
<td>Fraisage</td>
</tr>
<tr>
<td></td>
<td>N°1.6</td>
<td>Enrobés</td>
</tr>
<tr>
<td></td>
<td>N°1.7</td>
<td>Enduits superficiel</td>
</tr>
<tr>
<td>Entretien périodique</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N°2.1</td>
<td>Réparations localisées</td>
</tr>
<tr>
<td></td>
<td>N°2.2</td>
<td>Reprofilage manuel</td>
</tr>
<tr>
<td></td>
<td>N°2.3</td>
<td>Grattage</td>
</tr>
</tbody>
</table>

Chaussées non revêtues		
Entretien courant	N°2.1	Réparations localisées
	N°2.2	Reprofilage manuel
	N°2.3	Grattage
Entretien périodique	N°2.4	Reprofilage mécanisé
	N°2.5	Rechargement granulaire mécanisé
	N°2.6	Rechargement granulaire manuel
Dépendances	N°3.1	Entretien des accotements
	N°3.2	Entretien des talus
	N°3.3	Bordures et îlots
Assainissement	N°4.1	Fossés
	N°4.2	Collecteurs/buses et drains
	N°4.3	Gués et chaussées surélevées
	N°4.4	Regards et canalisations

Ouvrages d’art	N°5.1	Nettoyage général
	N°5.2	Accès à l’ouvrage
	N°5.3	Maîtrise de la végétation
	N°5.4	Evacuation des eaux
	N°5.5	Chaussées d’ouvrage
	N°5.6	Equipements
	N°5.7	Inspection OA
	N°5.8	Défauts mineurs structurels
	N°5.9	Défauts majeurs

Exploitation	N°6.1	Intervention sur accident
	N°6.2	Balisage
	N°6.3	Balayage
	N°6.4	Ramassage des déchets
	N°6.5	Patrouillage
2. Classification du réseau

Les itinéraires du réseau routier interurbain haitien sont définis et hiérarchisés selon trois niveaux :

- Le réseau primaire, ou prioritaire, ou structurant formé par les Routes Nationales qui relient les chefs-lieux des 10 départements et qui constituent des itinéraires interurbains principaux. La longueur totale du réseau considéré pour le territoire de la BCA est de 120,10 km selon la classification actuelle du MTPTEC ;

- Le réseau secondaire formé par les Routes Départementales et Communales, dont un inventaire a été dressé, représente 1.311 km de longueur. Il est constitué par des liaisons entre les routes nationales et par des dessertes de centres importants quant à la production de biens nationaux. La longueur totale du réseau considéré dans le territoire de la BCA est de 483,80 km selon la classification actuelle du MTPTEC ;

- Le réseau tertiaire est constitué par les dessertes locales, peu ou mal connues, et mal ou incomplètement répertoriées. La longueur totale du réseau modélisé dans le territoire de la BCA est de 469,00 km selon la classification actuelle du MTPTEC. Il est probable que ce réseau soit plus étendu mais au vu des éléments collectés nous retenons pour notre étude, les sections présentées dans le tableau de synthèse.

Pour la région de Boucle Centre-Artibonite, il est retenu une classification des routes semblables.

Le réseau est présenté dans les tableaux suivants.
<table>
<thead>
<tr>
<th>Objectif</th>
<th>Ville de départ</th>
<th>Ville d’arrivée</th>
<th>Distance en km</th>
<th>Classe administrative</th>
<th>Identification MITPEC</th>
<th>Largeur Chaussée</th>
<th>Type de terrain</th>
<th>Topographie</th>
<th>Plateforme</th>
<th>Type de surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>Mirebalais Nord</td>
<td>Thomonde sud</td>
<td>35,10</td>
<td>N</td>
<td>RN3</td>
<td>7</td>
<td>Vallonné/Plat</td>
<td>Montagneuse</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>RP</td>
<td>Thomonde Nord</td>
<td>Hinche sud</td>
<td>15,70</td>
<td>N</td>
<td>RN3</td>
<td>7</td>
<td>Vallonné</td>
<td>Montagneuse</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>RP</td>
<td>Morne-à-Cabri</td>
<td>Mirebalais</td>
<td>22,00</td>
<td>N</td>
<td>RN3</td>
<td>7</td>
<td>Accidenté</td>
<td>Montagneuse</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>RP</td>
<td>Pont Benoît</td>
<td>Pont Bouk</td>
<td>3,30</td>
<td>C</td>
<td>RC107A</td>
<td>5</td>
<td>Plat</td>
<td>#N/A</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>RP</td>
<td>Pont Bouk</td>
<td>Petite Rivière de l’Artibonite</td>
<td>5,10</td>
<td>C</td>
<td>RC101A</td>
<td>5</td>
<td>Plat</td>
<td>revêtue</td>
<td>Asphalte</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Petite Rivière de l’Artibonite</td>
<td>Mirault</td>
<td>8,50</td>
<td>C</td>
<td>RC101A</td>
<td>5</td>
<td>Vallonné</td>
<td>revêtue</td>
<td>Asphalte</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Mirault</td>
<td>Parémont</td>
<td>4,00</td>
<td>C</td>
<td>RC101A</td>
<td>5</td>
<td>Platt</td>
<td>revêtue</td>
<td>Asphalte</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Parémont</td>
<td>Verrettes</td>
<td>2,80</td>
<td>D</td>
<td>RD101</td>
<td>7</td>
<td>Plat</td>
<td>Montagneuse</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>RP</td>
<td>La Chapelle</td>
<td>RD 101-PK 055+500</td>
<td>9,88</td>
<td>D</td>
<td>RD101</td>
<td>7</td>
<td>Plat / Vallonné</td>
<td>Montagneuse</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>RP</td>
<td>RD 101-PK 055+500</td>
<td>Mirebalais</td>
<td>17,92</td>
<td>D</td>
<td>RD101</td>
<td>5</td>
<td>Plat / Vallonné</td>
<td>Montagneuse</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>RP</td>
<td>Pont Sondé</td>
<td>Parémont</td>
<td>18,50</td>
<td>D</td>
<td>RD101</td>
<td>7</td>
<td>Plat</td>
<td>Montagneuse</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>RP</td>
<td>Mirebalais</td>
<td>Lascahobas</td>
<td>21,60</td>
<td>D</td>
<td>RD301</td>
<td>7</td>
<td>Vallonné</td>
<td>Montagneuse</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>RP</td>
<td>Marchand</td>
<td>Bois de Chaux</td>
<td>12,30</td>
<td>D</td>
<td>RD107</td>
<td>5</td>
<td>Plat</td>
<td>revêtue</td>
<td>Asphalte</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Hinche Nord</td>
<td>RN 3-PK 103+500</td>
<td>5,65</td>
<td>N</td>
<td>RN3</td>
<td>7</td>
<td>Vallonné/Plat</td>
<td>Montagneuse</td>
<td>non revêtue</td>
<td>Terre battue</td>
</tr>
<tr>
<td>RP</td>
<td>RN 3-PK 103+500</td>
<td>RN 3-PK 108+350</td>
<td>4,85</td>
<td>N</td>
<td>RN3</td>
<td>7</td>
<td>Vallonné/Plat</td>
<td>Montagneuse</td>
<td>non revêtue</td>
<td>Terre battue</td>
</tr>
<tr>
<td>RP</td>
<td>RN 3-PK 108+350</td>
<td>Pignon sud</td>
<td>17,15</td>
<td>N</td>
<td>RN3</td>
<td>7</td>
<td>Vallonné/Plat</td>
<td>Montagneuse</td>
<td>non revêtue</td>
<td>Terre battue</td>
</tr>
<tr>
<td>RP</td>
<td>Pignon Nord</td>
<td>Saint-Raphaël</td>
<td>15,05</td>
<td>N</td>
<td>RN3</td>
<td>5</td>
<td>Platt</td>
<td>revêtue</td>
<td>Asphalte</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Marchand</td>
<td>Limite BCA (vers Dondon)</td>
<td>6,60</td>
<td>N</td>
<td>RN3</td>
<td>7</td>
<td>Plat</td>
<td>Montagneuse</td>
<td>non revêtue</td>
<td>Terre battue</td>
</tr>
<tr>
<td>RP</td>
<td>Saint-Raphaël</td>
<td>Saint-Michel de l’Attalaye</td>
<td>21,40</td>
<td>D</td>
<td>RD307</td>
<td>5</td>
<td>Plat</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Saint-Michel de l’Attalaye</td>
<td>Marchand-Dessalines</td>
<td>39,50</td>
<td>D</td>
<td>RD103A</td>
<td>5</td>
<td>Vallonné / accidenté</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Marchand-Dessalines</td>
<td>Pont Benoît</td>
<td>11,80</td>
<td>C</td>
<td>RC107A</td>
<td>5</td>
<td>Plat</td>
<td>non revêtue</td>
<td>Stabilisée</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Verrettes</td>
<td>RD 101-PK 030+700</td>
<td>9,30</td>
<td>D</td>
<td>RD101</td>
<td>7</td>
<td>Plat / Vallonné</td>
<td>Montagneuse</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>RP</td>
<td>RD 101-PK 030+700</td>
<td>RD 101-PK 036+700</td>
<td>6,00</td>
<td>D</td>
<td>RD101</td>
<td>7</td>
<td>Plat / Vallonné</td>
<td>Montagneuse</td>
<td>non revêtue</td>
<td>Pierres</td>
</tr>
<tr>
<td>RP</td>
<td>RD 101-PK 036+700</td>
<td>La Chapelle</td>
<td>8,90</td>
<td>D</td>
<td>RD101</td>
<td>7</td>
<td>Plat / Vallonné</td>
<td>Montagneuse</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>Désignation réseau</td>
<td>Ville de départ</td>
<td>Ville d’arrivée</td>
<td>Distance en km</td>
<td>Classe administrative</td>
<td>Identification MITPTEC</td>
<td>Largeur Chaussée</td>
<td>Type de terrain</td>
<td>Topographie</td>
<td>Plateforme</td>
<td>Type de surface</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>RS</td>
<td>Carrefour Saut d’eau</td>
<td>Saut d’eau Nord</td>
<td>5,55</td>
<td>D</td>
<td>RD113 ou RD114</td>
<td>5</td>
<td>vallonné</td>
<td>Montagneuse</td>
<td>revêtue</td>
<td>Asphalte</td>
</tr>
<tr>
<td>RS</td>
<td>Petite Rivière</td>
<td>Sterling</td>
<td>11,10</td>
<td>C</td>
<td>RC100G</td>
<td>5</td>
<td>plat</td>
<td>revêtue</td>
<td>Asphalte</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Pont benoît</td>
<td>Villard</td>
<td>11,40</td>
<td>C</td>
<td>RC100H</td>
<td>5</td>
<td>plat</td>
<td>revêtue</td>
<td>Asphalte</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Mirault</td>
<td>Labady</td>
<td>4,10</td>
<td>C</td>
<td>RC101A</td>
<td>5</td>
<td>plat</td>
<td>revêtue</td>
<td>Asphalte</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Carrefour Peye</td>
<td>Pont boul</td>
<td>8,80</td>
<td>C</td>
<td>RC101A</td>
<td>5</td>
<td>plat</td>
<td>revêtue</td>
<td>Asphalte</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Hince Ouest</td>
<td>Maïssade est</td>
<td>17,15</td>
<td>D</td>
<td>RD304</td>
<td>5</td>
<td>Plat / vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Maïssade ouest</td>
<td>RD304-PK 026+800</td>
<td>7,80</td>
<td>D</td>
<td>RD304</td>
<td>5</td>
<td>vallonné</td>
<td>Montagneuse</td>
<td>non revêtue</td>
<td>Terre battue</td>
</tr>
<tr>
<td>RS</td>
<td>RD304-PK 026+800</td>
<td>Savane Diane</td>
<td>15,05</td>
<td>D</td>
<td>RD304</td>
<td>5</td>
<td>vallonné</td>
<td>Montagneuse</td>
<td>non revêtue</td>
<td>Terre battue</td>
</tr>
<tr>
<td>RS</td>
<td>RD304-PK 049+500</td>
<td>RD304-PK 050+770</td>
<td>1,27</td>
<td>D</td>
<td>RD304</td>
<td>5</td>
<td>Plat / vallonné</td>
<td>Montagneuse</td>
<td>non revêtue</td>
<td>Stabilisée</td>
</tr>
<tr>
<td>RS</td>
<td>RD304-PK 050+770</td>
<td>Saint-Michel-L’Attalaye</td>
<td>0,53</td>
<td>D</td>
<td>RD304</td>
<td>5</td>
<td>Plat / vallonné</td>
<td>Montagneuse</td>
<td>non revêtue</td>
<td>Stabilisée</td>
</tr>
<tr>
<td>RS</td>
<td>Domond</td>
<td>Boucan Carré</td>
<td>9,60</td>
<td>C</td>
<td>RC300B</td>
<td>5</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Stabilisée</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Saut d’eau</td>
<td>Titanen</td>
<td>24,00</td>
<td>D</td>
<td>RD113 ou RD114</td>
<td>5</td>
<td>Accidenté</td>
<td>non revêtue</td>
<td>Stabilisée</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Thomonde</td>
<td>Nan casse</td>
<td>10,00</td>
<td>C</td>
<td>RC300C</td>
<td>5</td>
<td>plat / vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Colladère</td>
<td>Cerca Carvajal</td>
<td>11,00</td>
<td>D</td>
<td>RD305</td>
<td>5</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>La victoire</td>
<td>Pignon</td>
<td>10,80</td>
<td>C</td>
<td>RC300D</td>
<td>5</td>
<td>plat</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>La chapelle</td>
<td>Cabaret</td>
<td>28,70</td>
<td>D</td>
<td>RD114</td>
<td>5</td>
<td>accidenté</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Nan casse</td>
<td>Parédon</td>
<td>8,80</td>
<td>C</td>
<td>RC300C</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Sterling</td>
<td>Bois carré</td>
<td>13,00</td>
<td>C</td>
<td>RC100G</td>
<td>5</td>
<td>accidenté</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Hince</td>
<td>Thomassique</td>
<td>23,00</td>
<td>D</td>
<td>RD302</td>
<td>5</td>
<td>Vallonné</td>
<td>non revêtue</td>
<td>Stabilisée</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Ennery</td>
<td>Saint-Michel</td>
<td>26,20</td>
<td>D</td>
<td>RD103</td>
<td>5</td>
<td>accidenté</td>
<td>non revêtue</td>
<td>Stabilisée / Pierres</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Lascahobas</td>
<td>Belladère</td>
<td>27,00</td>
<td>D</td>
<td>RD301</td>
<td>5</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Pierres</td>
<td></td>
</tr>
<tr>
<td>Objectif réseau</td>
<td>Ville de départ</td>
<td>Ville d'arrivée</td>
<td>Distance en km</td>
<td>Classe administrative MTPTEC</td>
<td>Largeur Chaussée</td>
<td>Type de terrain</td>
<td>Topographie</td>
<td>Plateforme</td>
<td>Type de surface</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Gimballe</td>
<td>Desvarieux/Canard</td>
<td>10,70</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Gravier / Terre battue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Meye</td>
<td>Nicolas</td>
<td>2,60</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Desvarieux</td>
<td>Gimballe</td>
<td>1,20</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Desvarieux</td>
<td>Gascogne</td>
<td>2,20</td>
<td>5</td>
<td>plat</td>
<td>non revêtue</td>
<td>Stabilisée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Lascahobas</td>
<td>Dos Palais</td>
<td>10,90</td>
<td>5</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Pierres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Lascahobas</td>
<td>Barrage de Péligne</td>
<td>15,90</td>
<td>5</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Stabilisée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Thomonde</td>
<td>Baille Tourrible</td>
<td>19,10</td>
<td>3</td>
<td>vallonné / accidenté</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Tierra Muscady</td>
<td>RD</td>
<td>9,50</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Nan casse</td>
<td>RD</td>
<td>7,40</td>
<td>3</td>
<td>plat / vallonné</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Boucle de Marmont W</td>
<td>RN3</td>
<td>3,00</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
<td>Gravier / Pierres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Boucle de Marmont E</td>
<td>RN3</td>
<td>6,40</td>
<td>3</td>
<td>plat / vallonné</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Papaye</td>
<td>Bassin zim</td>
<td>9,10</td>
<td>5</td>
<td>plat / vallonné</td>
<td>non revêtue</td>
<td>Stabilisée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Hinche</td>
<td>Colladère</td>
<td>12,50</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Zone ouest RN3</td>
<td>Zone ouest RN3</td>
<td>4,70</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Saint-Michel-L'Attalaye</td>
<td>Marmelade</td>
<td>22,90</td>
<td>5</td>
<td>plat / accidenté</td>
<td>non revêtue</td>
<td>Pierres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Saint-Michel-L'Attalaye</td>
<td>Marmont</td>
<td>12,70</td>
<td>3</td>
<td>plat / vallonné</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>RD302</td>
<td>Monte Grande</td>
<td>3,10</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>RN3</td>
<td>Rhodé</td>
<td>14,40</td>
<td>3</td>
<td>plat / vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Rhodé</td>
<td>Bassin zim</td>
<td>5,20</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>RN3</td>
<td>Ecole de Ravine Cave</td>
<td>2,20</td>
<td>3</td>
<td>plat / vallonné</td>
<td>non revêtue</td>
<td>Pierres / Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Lalomas</td>
<td>Saint-Michel-L'Attalaye</td>
<td>9,30</td>
<td>5</td>
<td>plat / vallonné</td>
<td>non revêtue</td>
<td>Gravier / Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Hinche</td>
<td>La Yaille</td>
<td>5,80</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Terre cassée</td>
<td>Ducasse</td>
<td>4,30</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Pierres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Careduc</td>
<td>Reposoir</td>
<td>3,60</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Savane haleine</td>
<td>Savanette</td>
<td>0,50</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Savane haleine</td>
<td>Savane Laric</td>
<td>0,30</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Madressite</td>
<td>Abricots</td>
<td>4,40</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Maissade</td>
<td>Madame joie</td>
<td>10,60</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Pignon</td>
<td>Potosuel</td>
<td>11,00</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Saint-Raphaël</td>
<td>Pignon</td>
<td>21,10</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Dufailly</td>
<td>Bosiaux</td>
<td>5,40</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Stabilisée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Dufailly</td>
<td>Gumérin</td>
<td>5,40</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
<td>Stabilisée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Boucan carré</td>
<td>Nan dalle</td>
<td>13,50</td>
<td>3</td>
<td>plat / vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Boucan carré</td>
<td>Pépin</td>
<td>4,90</td>
<td>3</td>
<td>plat / vallonné</td>
<td>non revêtue</td>
<td>Pierres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Pont benoît</td>
<td>Source impériale</td>
<td>16,20</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Jean Denis</td>
<td>Gilbert</td>
<td>15,20</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Verettes</td>
<td>Temettes</td>
<td>15,30</td>
<td>3</td>
<td>accidenté</td>
<td>non revêtue</td>
<td>Pierres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Saut d'eau</td>
<td>RN3</td>
<td>10,70</td>
<td>5</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Stabilisée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>RN3</td>
<td>Fer à cheval</td>
<td>3,50</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Pierres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Terre cassée</td>
<td>La rochiquite</td>
<td>2,10</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Pierres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Maissade</td>
<td>Selpêtre</td>
<td>8,90</td>
<td>5</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Stabilisée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Boucan carré</td>
<td>Artibonite</td>
<td>0,70</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Saint Michel</td>
<td>L'Hermite</td>
<td>5,60</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Pierres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Nan Paul</td>
<td>Nan Pigeon</td>
<td>4,00</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Labady</td>
<td>Deslandes</td>
<td>20,70</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Savane à roche</td>
<td>Petite rivière</td>
<td>13,90</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Classification du réseau

<table>
<thead>
<tr>
<th>RT</th>
<th>Site</th>
<th>Commune</th>
<th>Longueur (km)</th>
<th>Type</th>
<th>Revêtement</th>
<th>Matériau de revêtement</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>Desarmes</td>
<td>Christian</td>
<td>6,30</td>
<td>3</td>
<td>accidenté</td>
<td>non revêtue</td>
</tr>
<tr>
<td>RT</td>
<td>Desarmes</td>
<td>Artibonite</td>
<td>2,30</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
</tr>
<tr>
<td>RT</td>
<td>Verrettes</td>
<td>Deschapelles</td>
<td>5,10</td>
<td>3</td>
<td>plat</td>
<td>non revêtue</td>
</tr>
<tr>
<td>RT</td>
<td>La chapelle</td>
<td>Artibonite</td>
<td>1,00</td>
<td>accidenté</td>
<td>non revêtue</td>
<td>Terre battue</td>
</tr>
<tr>
<td>RT</td>
<td>Savanette cabrale</td>
<td>Nan casse</td>
<td>11,40</td>
<td>3</td>
<td>vallonné</td>
<td>non revêtue</td>
</tr>
<tr>
<td>RT</td>
<td>Savanette cabrale</td>
<td>R. Thomonde</td>
<td>3,60</td>
<td>3</td>
<td>accidenté</td>
<td>non revêtue</td>
</tr>
<tr>
<td>RT</td>
<td>Gad sixième</td>
<td>Nan Vincent</td>
<td>22,60</td>
<td>plat</td>
<td>non revêtue</td>
<td>Terre battue</td>
</tr>
<tr>
<td>RT</td>
<td>Garde Biassou</td>
<td>Localite</td>
<td>3,20</td>
<td>pl</td>
<td>non revêtue</td>
<td>Terre battue</td>
</tr>
<tr>
<td>RT</td>
<td>Carrefour Loise</td>
<td>Marché Gad</td>
<td>1,00</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
</tr>
<tr>
<td>RT</td>
<td>Labègue</td>
<td>Marché Méréjil</td>
<td>7,30</td>
<td>vallonné</td>
<td>non revêtue</td>
<td>Terre battue</td>
</tr>
<tr>
<td>RT</td>
<td>Kay Micho</td>
<td>Trianon</td>
<td>12,60</td>
<td>5</td>
<td>vallonné</td>
<td>non revêtue</td>
</tr>
<tr>
<td>RU</td>
<td>Mirebalais sud</td>
<td>Mirebalais Nord</td>
<td>2,00</td>
<td>N</td>
<td>RN3</td>
<td>Vallonné/Plat</td>
</tr>
<tr>
<td>RU</td>
<td>Thomonde sud</td>
<td>Thomonde Nord</td>
<td>2,50</td>
<td>N</td>
<td>RN3</td>
<td>Vallonné</td>
</tr>
<tr>
<td>RU</td>
<td>Saut d'eau Nord</td>
<td>Saut d'eau Sud</td>
<td>1,05</td>
<td>D</td>
<td>RD113 ou RD114</td>
<td>Vallonné</td>
</tr>
<tr>
<td>RU</td>
<td>Hinche sud</td>
<td>Hinche Nord</td>
<td>2,35</td>
<td>N</td>
<td>RN3</td>
<td>Vallonné/Plat</td>
</tr>
<tr>
<td>RU</td>
<td>Pignon sud</td>
<td>Pignon Nord</td>
<td>1,15</td>
<td>N</td>
<td>RN3</td>
<td>Plat</td>
</tr>
<tr>
<td>RU</td>
<td>Hinche est</td>
<td>Hinche Ouest</td>
<td>1,25</td>
<td>D</td>
<td>RD304</td>
<td>Plat / vallonné</td>
</tr>
<tr>
<td>RU</td>
<td>Maissade est</td>
<td>Maïssade ouest</td>
<td>1,35</td>
<td>D</td>
<td>RD304</td>
<td>Vallonné</td>
</tr>
</tbody>
</table>
3. Fiches Actions Chaussées revêtues

3.1. Liste des fiches Chaussées revêtues

La thématique Chaussées revêtues comprend les fiches suivantes.

<table>
<thead>
<tr>
<th>N° Fiche</th>
<th>Intitulé</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°1.1</td>
<td>Emplois partiels aux enrobés / Bouchage nid de poule</td>
</tr>
<tr>
<td>N°1.2</td>
<td>Purges</td>
</tr>
<tr>
<td>N°1.3</td>
<td>Pontage fissures</td>
</tr>
<tr>
<td>N°1.4</td>
<td>Emplois partiels à l’émulsion</td>
</tr>
<tr>
<td>N°1.5</td>
<td>Fraisage</td>
</tr>
<tr>
<td>N°1.6</td>
<td>Enrobés</td>
</tr>
<tr>
<td>N°1.7</td>
<td>Enduits mécanisé</td>
</tr>
</tbody>
</table>

3.2. Référentiels

Méthode d’essai n°52 – Catalogue des dégradations de surface des chaussées – LCPC, mars 1998 ;

3.3. Profil en travers type
3.4. Les pathologies

3.4.1. Les déformations

Affaissement de rive

Définition
Enfoncement ponctuel, prononcé, localisé à gauche ou dans la bande de roulement de rive. L'affaissement hors rive prend le nom de « flache » lorsqu’il a une forme circulaire.

Causes
Pour les chaussées souples : fatigue due à un défaut de portance localisé du sol (poche d’argile humide)

Pour les chaussées traitées aux liants hydrauliques (ciment, laitier, etc…) : mauvaise qualité localisée des matériaux de l’assise.

Pour les canalisations et le remblayage des tranchées :
- Tassement des remblais de tranchée suite essentiellement à des mises en œuvre défectueuses ;
- Erosion interne des sols : entraînement des sols fins sous l’effet d’écoulements souterrains engendrant la création de vides localisés et la décompression des terrains sus-jacents :
 - superficielle (assise de chaussée et/ou des remblais de tranchée : entraînées à proximité des ouvrages d’assainissement (tranchées, réseaux…);
 - profonde (formation sableuse en place) : impliquant probablement les matériaux argilo-sableux vers les ouvrages plus profonds (puits, notamment).

Évolution
Faïencage puis départ des matériaux formant nid de poule. Phénomène accompagné parfois de remontées de fines.
Affaissement hors rive (flache)

Définition
Enfoncement prononcé localisé à la partie de la chaussée comprise entre le bord et la bande de roulement de rive.

Causes
Fatigue de la chaussée due à une épaisseur ou une qualité des matériaux ou un calage en rive insuffisants.
Pollution du corps de chaussée.
Drainage ou assainissement localement défectueux.
Retrait hydrique du sol support sous l'effet du climat et de la végétation, accotement insuffisamment ou mal entretenue.

Evolution
Apparition de faiençage et de bourrelet au droit de l'affaissement.
Fissure d’adaptation (tasement d’épaule ou de sol support).

Ornières à grand rayon

Définition
Déformation permanente longitudinale qui se crée sous le passage des roues et dont la largeur est supérieure à 80cm. Elle peut concerner l’une ou les deux bandes de roulement.

Causes
Fatigue de la chaussée par tassement des couches inférieures due à un défaut de portance du sol.
Réduction de la portance du support par défaut de drainage
Défaut de compactage à la construction.

Evolution
Augmentation de la profondeur de l’orниère.
Faiençage dans les ornières et bourrelets.
Ornières à petit rayon

<table>
<thead>
<tr>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déformation permanente longitudinale qui se crée sous le passage des roues et dont la largeur est inférieure à 80 cm. Elle peut concerner l'une ou les deux bandes de roulement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilité de l’enrobé à la température ou au trafic (formulation inadaptée) dans les fortes pentes ou rampes, ou dans les zones de freinage. Fluage d’une couche de roulement sur-compactée.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmentation de la profondeur. *Ressuage, indentation (enfoncement) des gravillons dans la couche de roulement *Formation de bourrelets latéraux.</td>
</tr>
</tbody>
</table>
3.4.2. Les fissures

Fissure transversale

Définition
Cassure sensiblement perpendiculaire à l’axe de la chaussée isolée ou périodique, d’espacement variable, intéressant tout ou partie de la largeur de la chaussée.

Causes
Retrait dû à la prise de l’assise traitée aux liants hydrauliques. La fissure remonte au travers de la couche de surface.
Défaut d’épaisseur de la couche de roulement, de la structure.
Mauvais choix du bitume (bitume trop dur).
Défaut de construction d’un joint de reprise de tapis d’enrobés.

Evolution
D’abord fines, les fissures peuvent s’épauprer et évoluer vers des faïences, des flaches et un départ de matériaux.
L’ouverture varie selon la saison.

Fissure longitudinale

Définition
Cassure sensiblement parallèle à l’axe de la chaussée apparaissant exclusivement dans une bande de roulement

Causes
Fatigue de la chaussée due à une structure insuffisante vis-à-vis du trafic, ou d’une portance insuffisante du sol.
Hétérogénéité de la structure.
Mauvaise compacté du joint.

Evolution
Faïence, ornière à grand rayon et départ de matériaux

Faïencage

Définition
Ensemble de fissures entrelacées ou mailées, soit à mailles fines (inférieures à 30cm), soit à mailles larges (supérieures à 30cm), formant une série de polygones non limités aux bandes de roulement
Causes Fatigue de la couche de roulement ou de la totalité de la chaussée, due à une structure insuffisante par rapport au trafic supporté ou à la portance insuffisante du sol.

Evolution Ouverture progressive des fissures, arrachement des matériaux et déformations. Dernier stade avant désordres graves.

Nid de poule

Définition Cavité circulaire créée à la surface de la chaussée par départ de matériaux. Stade final d’un faïençage ou d’une flache.

Causes Désagrégation et départ de matériaux dus à une mauvaise qualité de la chaussée, à une pollution par remontée d’argile dans le corps de la chaussée, à une forte perméabilité de la couche de roulement.

Evolution Augmentation en nombre et en taille Ruine totale de la chaussée.

Pelade

Définition Arrachement de la couche de roulement par plaque.

Causes Pour les enrobés : trop faible épaisseur de la couche de roulement (1 à 2 cm) avec collage défectueux qui, sous l’action des efforts horizontaux dus au trafic, se décolle du support. Contraintes trop élevées à la base de la couche de roulement dues à un support très déformable.

Pour les enduits : Mauvais collage au support, arrachement provoqué par le ressuage.

Evolution Arrachement progressif de la couche de surface.
Plumage

Définition
Etat d’un enduit dont la mosaïque est rendue non jointive par départ de granulats.

Causes
- Sous dosage en liant d’un enduit superficiel.
- Mise en œuvre dans des conditions atmosphériques défavorables : température trop basse, pluie… ;
- Utilisation de gravillons sales ;
- Compactage insuffisant ;
- Répandage de liant inadapté ;
- Remise trop rapide sous circulation.

Evolution
Arrachement progressif de la totalité des gravillons.

Désenrobage

Définition
Départ du mastic (liant et fines) autour des granulats d’une couche de roulement en enrobé.

Causes
- Adhésivité liant-granulat insuffisante (mauvaise adhésion entre le liant et les granulats qui favorise le désenrobage, présence d’eau)
- Sous-dosage du bitume ou mauvais dosage.
- Anomalies lors de la mise en place.
- Surchauffe ou vieillissement de l’enrobé
- Mise en œuvre dans des conditions météorologiques défavorables.
- Stagnation d’eau sur la chaussée.

Evolution
Processus continu dans le temps (augmentation de la perméabilité de l’enrobé) avec départ des gravillons non tenus. Détérioration progressive du revêtement.
Ressuage

Définition
Remontée du liant à la surface de la chaussée recouvrant tout ou partie des granulats

Causes
Surdosage de bitume sur des emplois partiels à l’émulsion ou sur des enduits.
Enfoncement des granulats dans un support bitumineux trop mou.
Délai insuffisant entre les réparations localisées à l’émulsion et la réalisation de l’enduit.
Surcompactage des enrobés

Evolution
Ces phénomènes sont aggravés par forte chaleur. Sous circulation, l’ensemble de la couche de roulement peut être arraché par les véhicules (collage aux pneumatiques).
Amorce de nid de poule.
La chaussée devient glissante.

Remontée de fines

Définition
Apparition d’éléments fins à la surface de la chaussée provenant de l’assise ; ces remontées sont généralement localisées au droit de défauts de la couche de roulement : fissures, faïencage, flaches,…

Causes
Perte de cohésion des matériaux de la couche de base de la structure, souvent due à un défaut d’interface pouvant être aggravé par une couche de roulement perméable ou de faible épaisseur.
L’entraînement des fines produites se fait par l’eau circulant au niveau de l’interface grave traitée – couche de roulement, sous l’effet du pompage engendré par le trafic.

Evolution
Accentuation des désordres accompagnant ces remontées.
Formation de nids de poule.
3.5. Chaussées - Fiches actions

Fiche N°1.1 - Emplois partiels aux enrobés / Bouchage des nids de poule

Objectifs

Bouchage des trous
- Rendre à la chaussée son état de surface initial ;
- Dès que l'on constate qu'un trou s'est formé, il faut reboucher avec les matériaux disponibles. Malgré ce caractère d'urgence, il est souhaitable d'apporter un soin particulier à ce type de réparation, afin d'éviter les interventions ultérieures.

Références

Note d'information du SETRA n°49 : Le bouchage des nids de poule

Méthode

Le choix des matériaux de bouchage se fait en fonction de la profondeur du trou, du niveau de service de la chaussée et de la disponibilité des matériaux :

- les enrobés à froid seront adaptés pour des trous de taille moyenne, sur le réseau à faible niveau de service (Réseau II et III) ;
- les enrobés à froid en sac ou en seau seront adaptés pour des trous de taille moyenne, sur le réseau à faible niveau de service. Le prix devient vite élevé sur des gros volumes ;
- les enrobés à chaud (0/10) seront préférables sur le réseau à haut niveau de service (Réseau I).

Réalisation du bouchage :

- Découper les bords du trou de façon à avoir des bords francs ;
- S'il y a de l'eau dans le trou, il faut l'évacuer ;
- Remplir le trou avec le matériau choisi en faisant dépasser légèrement de façon à ce que, une fois compacté, il soit juste au niveau de la chaussée ;
- Compacter le matériau à l'aide d'une dame mécanique ou à défaut d'une dame à main. Quel que soit le matériau utilisé, cette opération est primordiale pour la durée de vie de la réparation. La roue du camion, souvent utilisée, n'est pas suffisante car elle ne permet pas notamment le serrage des matériaux sur le bord ;
- Traitement de la surface : les enrobés ouverts à froid doivent être immédiatement gravillonnés avant la fin du compactage au 2/4 ou 4/6 pour éviter le collage aux pneumatiques.
Moyens

Entretien courant Moyens humains :
- 1 chef d’équipe ;
- 1 à 2 ouvriers ;
- 1 chauffeur de camion.

Moyens matériels :
- camion ;
- dame sauteuse ou 1 rouleau vibrant à main ;
- brouettes ;
- pelles ;
- pioches ;
- balais ;
- raclette.

Bon usage
- pour le bouchage des pelades aux enrobés à chaud, une couche d’accrochage est indispensable ;
- utilisation d’un moyen de transport calorifugé pour maintenir la température de l’enrobé à chaud ;
- la gamme de produits est très étendue et de qualité variable, il convient de s’assurer de leur fiabilité avant emploi.

Fréquence d’intervention
- 2 fois par an sur le réseau I.
- 1 fois par an sur le réseau II.

Surveillance-Détectio
Entretien courant pris en charge par les centres d’entretien.
Détection de zones concernées par les patrouilleurs.
Reconnaître la section à traiter sur toute sa longueur pour relever les types de dégradation à réparer et leur importance.

Sécurité
Signalement de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.

Développement durable
Recours au recyclage des fraisats d’enrobé dans les enrobés à chaud et à froid.
Fiche N°1.2 - Purges

Objectifs

| Substituer | Substituer tout (purges profondes de 30 à 45 mm) ou partie (purges superficielles de 10 à 15 cm) des matériaux du corps de chaussée par des matériaux de meilleure qualité. |

L’opération de purge dans des chaussées qui se sont stabilisées au cours des années n’est pas sans danger. Il convient en effet, que la réparation, qui coûte cher, soit particulièrement bien réalisée pour qu’elle soit durable et n’engendre pas à nouveau des désordres sur la chaussée. Il faut veiller particulièrement au choix des matériaux et au compactage efficace des couches et utiliser des matériels adaptés : la largeur de la purge doit donc être dans tous les cas d’au moins un mètre.

Il faut éviter de constituer un « piège à eau » en réalisant un drainage du fond de fouille.

Méthode

| Délimiter sur la chaussée les zones à réparer | Il convient de traiter la partie abîmée plus de 20 cm de part et d’autre. Pour les purges profondes, la largeur doit être, dans tous les cas, supérieure à 1m afin de permettre un compactage suffisant. |
| Découper | Lorsque la chaussée est constituée de matériaux traités, la découpe est réalisée mécaniquement, à la béche pneumatique, à la scie à disque diamanté ou à la fraiseuse à froid. Le bord de coupe doit être franc et vertical. Lorsque la chaussée est en matériaux non traités, la découpe est réalisée à la béche pneumatique. |
| Décaisser | Pour les purges profondes, l’épaisseur à décaisser doit être d’au moins 40cm. Il convient de poser systématiquement, au point bas de la fouille, un drain avec une pente vers un point bas du fossé.
- soit un drain PVC de diamètre 10 cm minimum ;
- soit des matériaux drainants.
Il est conseillé de disposer en fond de fouille, sur le sol en place, un géotextile ou de traiter à la chaux après griffage du sol.
Pour les purges superficielles, la profondeur à décaisser est de l’ordre de 10 cm. Il est nécessaire d’enlever tous les matériaux désagrégés et pollués. |
| Enlever et mettre en dépôt | Il convient d’enlever et de mettre en dépôt les matériaux pollués en optimisant l’atelier de transport. |
Traitement du fond de fouille

Dans le cas de purges profondes : compacter le fond de fouille.

Dans le cas de purges superficielles : nettoyer le fond de fouille.

Remplissage de la fouille

Avec des matériaux choisis, en compactant avec un matériel vibrant chaque couche, pour éviter tout tassement ultérieur.

Remplissage en enrobés à chaud mis en œuvre à une température supérieure à 125°C, sur une couche d’accrochage,

Remplissage en grave ciment mise en œuvre dans les heures qui suivent la fabrication avec maintien de la surface humide (délai de maniabilité). Un retardateur de prise est conseillé dans le cas de température ambiante élevée.

Réalisation de la couche de surface

Au même niveau que le reste de la chaussée, en veillant à une imperméabilisation de la couche de surface.

Moyens

Entretien courant

Moyens humains :
- 1 chef d’équipe ;
- 1 à 2 ouvriers ;
- 1 chauffeur de camion.

Moyens matériels :
- camion ;
- scie ;
- dame sauteuse ou 1 rouleau vibrant à main ;
- brouettes ;
- pelles ;
- pioches ;
- balais ;
- raclette.

Bon usage

L’opération de « purges » dans des chaussées qui se sont stabilisées au cours des années n’est pas sans danger. Il convient en effet, que la réparation, qui coûte cher, soit particulièrement bien réalisée pour qu’elle soit durable et n’engendre pas à nouveau des désordres sur la chaussée. Il faut veiller particulièrement au choix des matériaux et au compactage efficace des couches et utiliser des matériels adaptés : la largeur de la purge doit donc être dans tous les cas d’au moins un mètre.

Il faut éviter de constituer un « piège à eau » en réalisant un drainage du fond de fouille.

Le choix des matériaux pour purges doit se faire en fonction du classement de la route, de la disponibilité des matériaux et de leur coût.

Travaux complémentaires à prévoir

Vérifier le bon écoulement de l’eau dans le fossé au droit des purges.
S’assurer en particulier, que le drain ne fonctionne pas à l’envers et n’alimente pas le corps de chaussée.
Dérer l’accotement si nécessaire.

Fréquence d’intervention

Intervention à la demande en fonction des besoins

Surveillance-Détention

Entretien courant pris en charge par les centres d’entretien.
Détention des zones concernées par les patrouilleurs.
Reconnaître la section à traiter sur toute sa longueur, pour relever les types de dégradation à réparer et leur importance.

Sécurité

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.

Développement durable

Les purges permettent de retarder au maximum l’apparition de dégradations pouvant remettre en cause la conservation de la chaussée, la sécurité et le confort des usagers.
Recours au recyclage des fraisats d’enrobé dans les enrobés à chaud et tièdes.
FicheN°1.3- Pontage fissures

Objectifs

Etancher la chaussée
Le pontage des fissures vise à rétablir l’étanchéité à la surface de la couche de roulement au droit des « lignes de ruptures » constituées par les fissures.

Limiter l’évolution des fissures
Il permet donc d’éviter l’exécution anticipée de nouvelles couches de roulement sur des chaussées normalement dimensionnées.

Un traitement anticipé des fissures prévient leur évolution et donc la nécessité d’appliquer des traitements beaucoup plus lourds (nouvel enrobé, par exemple).

Références

- Note technique « Scellement des fissures » du Ministère des Transports réalisée par le LCPC et le SETRA, 1981.

Méthode

Les fissures suivantes peuvent être traitées :

- fissures de retrait thermique ;
- fissures de vieillissement ;
- fissures de joint.

Étapes

La méthodologie de la réfection de fissures dans les revêtements bitumineux est composée des étapes suivantes :

- préparation de la fissure : soufflage (avec une lance thermique à air comprimé) et/ou brossage mécanique, séchage et réchauffage de la zone de pontage. Le but étant d’obtenir une surface propre et sèche.

Pour le traitement des fissures isolées :

- répandage du produit : le produit de colmatage, solide à température ambiante, est chauffé à 170° C dans un fondoir. Le produit fluidifié est conduit par pompage jusqu’au dispositif d’application adapté.

- gravillonnage manuel ou avec une micro-gravillonneuse. Le rôle du gravillonnage est de limiter le collage aux pneus, l’usure, la glissance.

La pénétration du produit est peu profonde, le produit de pontage est utilisé sur une épaisseur environ 2 mm et sur une largeur de 5 à 15 cm.

Période

Les travaux des pontages sont à éviter en temps de pluie.

Le traitement d’une fissure ou d’un joint nécessite un support absolument propre, sec et non cohésif.

La température du support doit être supérieure à 5 °C. Une macrorugosité élevée améliore l’adhérence du produit, le support ne doit donc pas être trop lisse.
Moyens

Entretien courant
- Moyens humains
 - 1 équipe spécialisée

Matériel d’application :
- lance thermo-pneumatique (nettoyage de la surface) ;
- fondoir à bain (réchauffement du produit).
- Fer spécial, assurant le dosage du produit.

Bon usage
Ouverture à la circulation 15 minutes au plus tôt après l’application du produit.
Eviter le pontage en période humide.

Fréquence d’intervention
Intervention à programmer à la demande en fonction des besoins.
Au moins 1 fois /an sur le réseau I.

Surveillance-Détection
Exécutées par les entreprises locales dans le cadre d’un marché spécifique
Détection des zones concernées par les patrouilleurs.
Reconnaître la section à traiter sur toute sa longueur, pour relever les types de dégradation à réparer et leur importance.

Sécurité
Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.
Fiche N°1.4 - Emplois partiels à l’émulsion / point à temps

Objectifs

Les objectifs sont multiples :
- Eviter que l’eau ne pénètre à l’intérieur du corps de chaussée ;
- Réaliser la couche de surface de certaines réparations (purge, reprofilage, etc…) ;
- Eviter le départ par arrachement des matériaux de surface sous l’effet du trafic.

Références

Les enduits relèvent essentiellement des normes suivantes :
- NF EN 13043, NF P 18-545, NF EN 15322 et NF EN 13808 pour les constituants ;
- NF EN 12271 pour les spécifications.

Méthode

Les emplois partiels à l’émulsion sont des enduits superficiels localisés. la technique consiste en répandre du liant et des gravillons avec compactage. La différence essentielle est que les emplois partiels sont réalisés, d’une part, de façon artisanale en maîtrisant moins bien les dosages du liant et des gravillons, qu’avec une mise en œuvre mécanisée, et d’autre part, sur des supports dégradés et hétérogènes.
Moyens

Entretien périodique

Moyens humains :
- 1 chef d’équipe ;
- 2 à 3 ouvriers ;
- 1 chauffeur de camion.

Moyens matériels :
- camion benne ;
- remorque tractée pour le rouleau vibrant ;
- dame sauteuse ou 1 rouleau vibrant à main ;
- cuve à liant calorifugée tractée.

Bon usage

Le traitement s’effectue en quatre phases :

1. **Balayer la zone** : Cette opération, manuelle, permet d’obtenir une surface propre et sèche,

2. **Délimiter la zone à imperméabiliser** : Délimiter la surface à réparer par un marquage à la craie,

3. **Répandre le liant sur la surface à l’aide d’une lance de pulvérisation ou d’un arrosoir en respectant les valeurs suivantes** :
 - 1,5 kg/m² pour une émulsion de bitume,
 - 1 kg/m² pour du bitume fluidifié.

Veiller à ne pas surchauffer le bitume fluidifié, cela diminuerait sa durabilité. Utiliser un thermomètre pour contrôler la température pendant le chauffage. Normalement, les émulsions ne se réchauffent pas.

Ne pas fumer pendant l’application de bitume fluidifié.

4. **Répandre les granulats** : Les granulats sont prélevés dans le camion ou la remorque et répandus à l’aide de pelles. Les matériaux utilisés sont :
 - Sable grossier (jusqu’à 6mm) pour le traitement de fissures,
 - Gravillons (par exemple 6 à 10mm) pour les emplois partiels.

Toute la surface à réparer doit être couverte.

Dans le cas de répandage de gravillons, les compacter à l’aide d’un petit compacteur.

Dès lors que le traitement de surface est à réaliser en continu sur de grandes longueurs, il est préférable d’utiliser la rampe du point à temps qui permet un dosage en liant plus régulier et plus précis.

Pour que la quantité de liant répandu reste constante dans le temps, il convient de veiller :

- à ce que la pression dans la cuve reste constante de l’ordre de 0,2 à 0,3Mpa, et donc de mettre en route régulièrement le compresseur ;
- à ce que la température de l’émulsion demeure constante (calorifugeage de la cuve) ;
- à ce que le jet de la lance soit toujours propre (nettoyer le jet sans agrandir l’orifice plutôt que de toucher à la vis de réglage).

Les émulsions peuvent être améliorées par addition d’élastomère ou par une meilleure maîtrise de la rupture.
Fréquence

Intervention réalisée sur demande, au moins 1 fois par an sur le réseau I.

Surveillance-Détection

Exécutées par les entreprises locales dans le cadre d’un marché spécifique
Détecte les zones concernées par les patrouilleurs.
Reconnaître la section à traiter sur toute sa longueur, pour relever les types de dégradation à réparer et leur importance.

Sécurité

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- des cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.
Fiche N°1.5 - Fraisage

Objectifs

Enlèvement d'une épaisseur variable du revêtement existant par fraisage à froid et mise en place d'un nouveau revêtement.

Références

Les opérations de fraisage seront exécutées conformément à l’article 8.2 des normes NF P 98 150-1 et NF P 98-150-2 avec du matériel conforme à la norme NF P 98 713.

Méthode

La méthode consiste à enlever en tout ou en partie, selon le type de chaussée et les dégradations présentes, la couche d'enrobé bitumineux existante et à la remplacer par une nouvelle couche d'enrobé bitumineux, afin de restaurer ou d'améliorer la surface de roulement de la chaussée.

L'opération permet aussi de corriger le profil transversal et longitudinal en effectuant des corrections sur la chaussée fraisée avant de poser la nouvelle couche de surface. Elle permet aussi de respecter les contraintes de seuil.

Le fraisage des couches de chaussée existantes devra être effectué sur une largeur minimale de 1m.

La phase de fraisage doit être menée de manière rigoureuse afin d'obtenir la meilleure régularité possible en nivellement. La surface après fraisage doit être compatible avec la technique d'enrobé utilisée pour le rechargement (stries de profondeur < 5 mm, par exemple).

Les pentes transversales de la couche existante rabotée devront être respectées.

Après l’opération de fraisage, l’entreprise procédera à un balayage haute-pression soigné et à un nettoyage par grattage si nécessaire. Les plaques de ressuage seront brûlées.

Ces travaux feront l'objet d'une réception préalable avant application de la couche d'accrochage. Suivant le cas, ce contrôle pourra mettre en évidence la nécessité de purge éventuelle, et / ou d'un rabotage complémentaire, en particulier dans le cas où l'interface entre les enrobés rabotés et ceux du support ne serait pas atteinte. Le nivellement, l'un n' et le niveau de dégradations de surface seront également vérifiés.

Moyens

Entretien périodique

Matériel :

- une fraiseuse + son chauffeur,
- Une balayeuse aspiratrice à haute pression + son chauffeur,
- des camions + chauffeurs.

Le fraisage est à éviter sur une faible épaisseur du revêtement (moins de 50 mm).

Cette technique est déconseillée en cas de fissuration généralisée de sévérité majeure.

Aussi cette méthode ne devrait pas être utilisée lorsqu'il y a des soulèvements différentiels sous l'effet du gel ou si la capacité structurale de
la chaussée est déficiente.

Fréquence d’intervention

Le démarrage de l’opération de fraisage est conditionné à la possibilité de mettre en œuvre l’enrobé.

Surveillance-Détecton

Exécutées par les entreprises locales dans le cadre d’un marché spécifique Détection de zones concernées par les patrouilleurs.

Reconnaître la section à traiter sur toute sa longueur pour relever les types de dégradation à réparer et leur importance.

Sécurité

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau de chaussée rétrécie ;
- feux clignotants ;
- panneau de projection des gravillons ;
- cônes ;
- panneau J2

EPI :
- baudrier ;
- chaussures de sécurité

Développement durable

Recyclage des fraisats issus du rabotage des chaussées.
Fiche N°1.6 - Enrobés

Objectifs

L’utilisation d’enrobés à chaud (béton bitumineux) fait partie de l’entretien périodique ou des travaux d’amélioration.

L’enrobé à chaud appliqué sur d’importantes surfaces peut être utilisé pour :

- renforcer la chaussée existante pour prolonger sa durée de vie et combler des déformations de faible ampleur (jusqu’à 20 mm) qui gênent la circulation ou présentent un danger ;
- entretenir la couche de surface pour assurer le confort et la sécurité des usagers ;
- usure (glaçage, fissuration, peignage) ;
- absence d’enduit (fissures) ;
- excès de liant (ressuage) ;
- imperméabiliser la structure de chaussée.

Références

Les enrobés bitumineux relèvent, hors spécification complémentaire, essentiellement des normes suivantes :

- NF EN 13043, NF P 18-545, NF EN 13108-8, NF EN 12591, NF EN 13924 et NF EN 14023 pour les constituants ;
- NF EN 13108-1 pour leurs performances ;
- NF EN 13108-2 pour les Bétons Bitumineux Très minces ;
- NF EN 13108-7 pour les Bétons Bitumineux Drainants ;
- NF EN 13108-20 pour leur épreuve de formulation ;
- NF EN 13108-21, pour leur maîtrise de la production ;
- NF P 98-150-1 pour leur mise en œuvre.

Les enrobés bitumineux en enrobés à chaud consistent toujours en un mélange de granulats, et de liant bitumineux, malaxés à chaud en centrale.

Méthode

La mise en œuvre des matériaux est réalisée soit :

- en nivellement, où le matériel est guidé altimétriquement par rapport à la cote du projet ;
- en surfaçage, où le matériel prend sa référence altimétrique directement sur le support.
Moyens

Entretien périodique

Préparation du support :
- une balayeuse mécanique + son chauffeur,
- un répandeur avec thermomètre + son chauffeur (couche d’accrochage).

Matériel de mise en œuvre :
- 1 finisseur et son chauffeur. Le répandage est réalisé par un finisseur dont la vitesse est inférieure à 7 m/min;
- des camions (avec bâches pour couvrir les enrobés pendant le transport) et leurs chauffeurs ;
- un compacteur et son chauffeur. Le compactage est réalisé par un atelier de compacteurs à pneus et/ou vibrants ;
- un thermomètre ;
- pelles ;
- râteaux ;
- balais ;
- pioches.

Équipe d’application :
- 1 chef d’équipe ;
- 1 surveillant de la régulation du trafic ;
- 1 surveillant pour les travaux ;
- 1 opérateur de rampe de pulvérisation ;
- 1 assistant de finisseur ;
- 2 contrôleurs de la circulation ;
- 2 ouvriers pour l’épandage ;
- 2 ouvriers pour la finition ;
- Les chauffeurs des engins cités ci-dessus.

La fabrication des enrobés se fait en centrale.

Bon usage

La mise en œuvre d’enrobés à chaud dans des conditions optimales nécessite notamment :
- un reprofilage préalable (comblement des flanches, nids de poules, et ornières), en cas de support très déformé ;
- un rehaussement des glissières de sécurité ;
- la mise à niveau des accotements.

Il convient :
- d’avoir un atelier adapté aux cadences, en bon état de fonctionnement et avec une équipe compétente ;
- de savoir qu’un reprofilage préalable permet d’améliorer l’uni longitudinal du support ;
- ne pas réaliser les enrobés à chaud sous la pluie.

Correctement compactés et mis en œuvre, ils renforcent la route en lui donnant un bon uni et une bonne imperméabilisation.
Préalablement à l’intervention il convient :

- De vérifier les équipements et engins (état, nombre, disponibilité) ;
- De s’assurer de la disponibilité du personnel ;
- De vérifier que les travaux que les travaux préliminaires ont été exécutés (reprise des nids de poules, flaches, ornières et des bords de la route) ;
- De dégager et nettoyer la route ;
- De s’assurer de la disponibilité des matériaux (centrale d’enrobage) et contrôler l’itinéraire emprunté ;
- Faire acheminer le matériel et équipements sur le chantier ;
- Organiser une garde de nuit pour les équipements si nécessaire.

Fréquence d’intervention

Tous les 6 ans sur le réseau I.
Tous les 10 ans sur le réseau II.

Surveillance-Détection

Programme d’intervention défini par le ministère.
Marché spécifique avec des entreprises spécialisées.

Sécurité

A adapter en fonction du type de mise en œuvre :

Mise en œuvre par demi-chaussée, sous circulation alternée :

- feux clignotants ;
- panneaux limitation de vitesse ;
- panneaux chaussée rétrécie ;
- cônes.

Mise en œuvre en pleine largeur : mise en place d’une déviation :

- panneaux limitation de vitesse ;
- panneau de déviation.

EPI :

- baudrier ;
- chaussures de sécurité.

Développement durable

Recours au recyclage des fraisats d’enrobé dans les enrobés neufs. Utilisation d’enrobés tièdes et des enrobés à froid.

Retraitement en place à base d’émulsion de bitume ou aux liants hydrauliques (chaussées à trafic moyen à faible). Cette technique permettent de restructurer (fissuration-décollage) une couche en place tout en valorisant le matériau en place et en limitant l’apport de matériau et de liant.
Objectifs

L’application d’un enduit fait partie de l’entretien périodique. C’est une couche de roulement destinée à régénérer les caractéristiques de surface, d’une épaisseur comprise entre 1 et 1,5 cm.

Les deux principales fonctions d’un enduit superficiel sont l’imperméabilisation du support et la rugosité superficielle.

Champ d’application :

- Un enduit superficiel peut être utilisé pour traiter une zone importante de la route lorsque :
 - La surface est très usée,
 - La surface est devenue perméable ou s’est fissurée, permettant à l’eau d’atteindre et de dégrader l’assise,
 - La texture superficielle est inappropriée, entraînant une augmentation de la glissance (par exemple remontée de liant à la surface).

- Habituellement, il est nécessaire de procéder au préalable à des travaux de réparations localisées, notamment en cas de dégradations de l’assise, d’affaissement, de nids de poule, etc.

- Généralement, l’enduit superficiel est appliqué sur toute la largeur de la chaussée (dans certains cas, uniquement sur la moitié de la largeur) et sur des longueurs variant de quelques centaines de mètres à plusieurs kilomètres ;

- Sous réserve d’une planification et d’une organisation rigoureuses, il est possible d’obtenir des rendements élevés ;

- L’application d’un enduit superficiel n’est généralement possible que par temps sec, l’utilisation d’une émulsion de bitume permettant plus de souplesse à cet égard ;

- Un enduit superficial ne permet pas de corriger des dégradations telles que les flaches, les déformations de la chaussée ou de graves fissurations.

Références

- NF EN 13043, NF P 18-545, NF EN 15322 et NF EN 13808 pour les constituants ;
- NF EN 12271 pour les spécifications ;
- les dispositions du fascicule 26 "exécution des enduits superficiels d’usure" sont applicables ;
- note d’information n° 95 « enduits superficiels » du SETRA, 1997 ;

Les différents types d’enduits :

Les diverses combinaisons possibles des couches constitutives déterminent les types d’enduits superficiels à savoir :

- l’enduit monocouche :
 - 1 couche de liant bitumineux,
 - 1 couche de gravillons.
l'enduit bicouches :
 - 2 couches de liants bitumineux, chacune recouverte d'une couche de gravillons.

l’enduit monocouche double gravillonnage :
 - 1 couche de liant bitumineux,
 - 2 couches de gravillons de différentes dimensions compatibles (par exemple 10/14 et 4/6), la seconde couche servant à remplir les interstices entre les gros matériaux pierreux de la première couche et recouvrant complètement la surface de la chaussée.

l’enduit monocouche inversé gravillonné (souvent utilisé sur des surfaces existantes présentant un ressuage excessif) :
 - 1 couche de gravillons (par exemple 10/14),
 - 1 couche de liant bitumineux,
 - 1 deuxième couche de gravillons (par exemple 4/6).

l’enduit tri-couches :
 - 3 couches de liants bitumineux, chacune recouverte d’une couche de gravillons, par exemple 10/14 en première couche, puis 6/10 et enfin 4/6 en troisième couche.

Méthode

Le support doit présenter un orniérage inférieur à 3 cm.

Des travaux préparatoires ou une adaptation de la technique sont à prévoir dans le cas de support hétérogène. Ils consistent généralement en réaliser ponctuellement un enduit préliminaire, un déflachage, un reprofilage.

La préparation du support est à réaliser à l’année n-1 (emploi partiel, pontage de fissures, reprofilage).

Une visite préalable du support permet de recueillir les éléments nécessaires à l’ajustement et la validation de la formulation de l’enduit.

Moyens

Entretien périodique

Préparation du support :
 - une balayeuse mécanique et son chauffeur.

Personnel de mise en œuvre :
 - 1 chef d’équipe ;
 - 1 surveillant ;
 - 2 à 4 manœuvreurs gravillonneurs ;
 - 1 assistant pour le gravillonneur ;
 - 2 contrôleurs de circulation ;

Matériel de mis en œuvre :
 - épandeur à liant, avec thermomètre, munie d’une rampe arrière d’épandage ;
 - un atelier de gravillonnage ; soit un camion équipé d’un gravillonneur ;
 - un compacteur à pnes ;
 - 3 ou 4 camions gravillonneurs ;
 - 1 chargeur (pour le chargement des gravillons) ;
Véhicules légers ;
pelles ;
râteaux ;
balaïs ;
pioches ;
brouettes.

Fournitures :
Rouleaux de papier solide (largeur minimum 50 cm) ;
1 bidon de gazole pour le nettoyage de la rampe d’épandage et des outils ;
Gicleurs de rechange pour la lance de pulvérisation ;
Boîte à outil pour le démontage de la lance de pulvérisation et le réglage des équipements de répandage des gravillons ;
Bidons d’huile coupés n 2, pour collecter le bitume pendant l’essai de la rampe d’épandage ;
Chiffons ;
Pinceaux ;
Seaux métalliques ;
Crâle et ficelle.

Bon usage
Une bonne réalisation de l’enduit requiert le respect des points suivants :
- température du support > 10°C ;
- support sec.

Les contre-indications d’emploi sont les sites difficiles, les zones d’arrêt et sinueuses, sous fort trafic.

Le niveau de bruit de roulement des enduits superficiels est relativement élevé et présente une dispersion importante. Cependant, ce niveau de bruit de roulement, qui est directement lié à la rugosité du revêtement, peut être réduit en choisissant judicieusement la dimension des gravillons.

Fréquence d’intervention
Tous les 6 ans sur le réseau I.
Tous les 10 ans sur le réseau II.

Surveillance-Détecte
Programme d’intervention défini par le ministère.
Marché spécifique avec des entreprises spécialisées.
Sécurité

Equipements de signalisation et sécurité
- panneaux limitation de vitesse ;
- panneaux chaussée rétrécie ;
- panneau projection de gravillons ;
- cônes ;
- feux clignotants.

EPI :
- baudrier ;
- chaussures de sécurité.
4. Fiches Actions Chaussées non-revêtuës

4.1. Liste des fiches Chaussées non-revêtuës

La thématique Chaussées comprend les fiches suivantes.

<table>
<thead>
<tr>
<th>Les thématiques</th>
<th>N° Fiche</th>
<th>Intitulé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entretien courant</td>
<td>N°2.1</td>
<td>Réparations localisées</td>
</tr>
<tr>
<td>Entretien courant</td>
<td>N°2.2</td>
<td>Reprofilage manuel</td>
</tr>
<tr>
<td>Entretien courant</td>
<td>N°2.3</td>
<td>Grattage</td>
</tr>
<tr>
<td>Entretien périodique</td>
<td>N°2.4</td>
<td>Reprofilage mécanisé</td>
</tr>
<tr>
<td>Entretien périodique</td>
<td>N°2.5</td>
<td>Rechargement granulaire mécanisé</td>
</tr>
<tr>
<td>Entretien périodique</td>
<td>N°2.6</td>
<td>Rechargement granulaire manuel</td>
</tr>
</tbody>
</table>

4.2. Les pathologies

4.2.1. Les déformations

Pertes de matériaux de surface

Définition
Usure ou perte de la couche de roulement.

Causes
Effet conjugué du trafic et de l’entretien (reprofilage en déblai).

Evolution
Usure de la couche de roulement.
Apparition de signes de fatigue.
Disparition de la couche de roulement.

Techniques d’entretien
Rechargement de matériaux.

Déformation du profil en travers

Définition
Déformation du profil en travers.

Causes
Portance insuffisante du sol support.
Mauvais drainage.
Tassement du matériau ayant servi à boucher un nid de poule.

Evolution
Aggravation en surface ou en profondeur de la couche de roulement (approfondissement rapide pendant la saison des pluies).

Techniques d’entretien
Réfection locale, reprofilage.
Orniéragé

Définition
Dépression de la chaussée sous forme de bandes parallèles à l’axe de la chaussée et correspondant aux zones de passage préférentielles des roues.

Causes
- Sous dimensionnement de la chaussée.
- Compactage insuffisant.
- Humidité importante dans les couches inférieures de la chaussée.
- Absence ou insuffisance de drainage.

Évolution
Ravinement longitudinaux et nids de poules.

Techniques d’entretien
Reprofilage avec apport de matériaux.

Nids de poule

Définition
Cavité de forme arrondie à bord plus ou moins francs à la surface de la couche de roulement.

Causes
- Arrachement localisés de matériaux.
- Fondation de qualité insuffisante.
- Irrégularité et mauvais compactage du matériau de surface.

Évolution
Approfondissement et élargissement des trous.
- Accumulation d’eau pendant la saison des pluies.
- Fragilisation du corps de la chaussée.

Techniques d’entretien
Réfection locale

Ravinement

Définition
Saignées ou ravines de plus ou moins grandes dimensions, longitudinales ou transversales.

Causes
Erosion de la surface déroulement par les eaux de ruissellement.
Evolution
Les petites ravines qui, s’approfondissant de façon continue évoluent jusqu’à de véritable tranchées infranchissable par la circulation automobile.

Techniques d’entretien
Réfection locale, reprofilage.

Tôle ondulée

Définition
Ondulation régulière et rapprochée perpendiculaire à l’axe de la chaussée

Causes
Manque de stabilité de la couche de roulement.
Cohésion insuffisante des matériaux.
Pression trop élevée des pneus des véhicules.

Evolution
Arrachements des matériaux entraînant la formation de nids de poule à la suite des premières pluies

Techniques d’entretien
Reprofilage léger en remblai ou en déblai suivant la période.
4.3. Chaussées non-revêtu es - Fiches actions

Fiche N°2.1 - Réparations localisées

Objectifs

Des opérations localisées s'imposent parfois entre deux opérations de reprofilage, ou avant une opération de nivellement en d'importants nids-de-poule ou flaches.

Les réparations localisées peuvent être effectuées soit sur des zones usées ou érodées, soit pour restaurer des zones usées ou érodées, soit pour restaurer des zones à faible portance par temps de pluie.

Ces travaux d'entretien consistent à remplacer ou à rajouter des matériaux comme couche de surface sur des zones relativement limitées.

Les réparations localisées correspondent à une méthode utilisée le plus souvent pour une réfection de surface impliquant moins de 1 ou 2 chargements de matériaux par an. Des travaux d’une plus grande ampleur sont généralement désignés par le terme de rechargement, qui peut être une opération mécanisées ou manuelle.

Dégradations

Les réparations localisées sont utilisées pour corriger :

- Les nids-de-poule ;
- Les ornières ;
- Les zones de faible portance ;
- Les ravines dues à l'érosion.

Les réparations localisées ne sont pas appropriées pour remédier aux tôles ondulées. Ce type de dégradation doit être réparé de préférence par un reprofilage mécanisé ou par un reprofilage manuel ou corrigé sommairement par grattage.

Lorsque les nids-de-poule sont nombreux, la section de route doit être scarifiée à l’aide d’une niveleuse automotrice ou, le cas échéant, rechargée.

Méthode

Equipe Mobile d'intervention

Travaux préliminaires :

- Vérifier que tous les éléments nécessaires (matériel outillage) soient prêts et en état ;
- Vérifier le plein de carburant, le niveau d’huile et d’eau, ainsi que le bon état mécanique du camion ou du tracteur ;
- Vérifier la disponibilité des dispositifs de signalisation ;
- Si l’eau n’est pas disponible sur le chantier, remplir le fût d’eau ;
- Prendre les mesures nécessaires pour charger les matériaux graveleux sur le camion ou la remorque, soit au dépôt, soit à la carrière de lest.

Mise en place de la signalisation temporaire.

Exécution des travaux :

- Le matériau est déchargé à la main ou déchargé sur l'accotement au niveau de l'endroit où la réparation localisée doit être effectuée. Il ne doit jamais être déchargé sur la route ;
Retirer, à l'aide d'un balai, les matériaux libres et l'eau stagnante du nid-de-poule ou de l'ornière à traiter ;

Dans le cas des nids-de-poule larges ou profonds, tailler les bords à la verticale pour atteindre un matériau sain ;

L'humidité du matériau peut être facilement vérifiée en serrant une poignée dans la main. Si la boule se forme bien, le matériau est suffisamment humide et peut être utilisé. Si en pressant le matériau, il en sort de l'eau, il est trop humide et ne doit pas être utilisé ;

Si le matériau est sec, la boule ne se forme pas, arrose d'eau la zone à réparer et ajouter de l'eau au matériau d'apport ;

Remplir la zone de matériaux sur une profondeur d'environ 10 centimètres ;

Si le matériau est sec, l'arroser d'eau pour favoriser son compactage ;

Compacter ensuite la couche à l'aide du compacteur ou de la dame à main ;

L’épaisseur du remplissage est ainsi constituée de plusieurs couches ;

La zone à traiter doit être remplie uniformément de matériaux jusqu’à environ 3 centimètres au-dessus du niveau de la chaussée ; l’étaler pour obtenir la forme souhaitée ;

3 centimètres équivaut approximativement à l’épaisseur du manche d’un râteau ;

Compacter le matériau à l’aide du compacteur ou de la dame à main pour obtenir un niveau légèrement au-dessus de celui de la chaussée environnante ;

La méthode de réparation est la même pour les petites ou les grandes zones endommagées. La dame à main est utilisée pour des nids-de-poule de faible ampleur. Le compacteur est utilisé pour des zones plus importantes, mais les dames à main sont nécessaires pour les angles et les bords ;

Une réparation commencée ne doit pas être laissée inachevée pendant la nuit ;

En fin de journée, le chantier doit être dégagé pour la circulation, tous les panneaux et obstacles devant être retirés de la chaussée.

Retrait de la signalisation temporaire
Equipe Mobile d'intervention

Personnel :
- 1 chef d'équipe ;
- 1 conducteur ;
- 2 à 6 ouvriers ;
- 2 contrôleurs de la circulation.

Matériel de mise en œuvre :
- 1 petit camion ou 1 tracteur avec remorque. Si deux remorques sont disponibles, l'une peut être en cours de chargement pendant que l'autre est remorquée jusqu'au chantier ;
- **Compacteurs :**
 - 1 compacteur vibrant à commande manuelle, avec son carburant,
 Ou
 - 1 dame manuelle à semelle métallique pour chaque ouvrier travaillant au compactage.
- 1 balai pour deux ouvriers ;
- 1 pioche de terrassier pour deux ouvriers ;
- 1 pelle pour deux ouvriers ;
- 1 houe ou 1 pioche à défricher pour deux ouvriers ;
- 1 râteau pour deux ouvriers ;
- 1 brouette ;
- 1 dame à semelle métallique pour chaque ouvrier travaillant au compactage (si aucun compacteur vibrant n’est disponible) ;
- 1 bidon à eau (200 litres) ;
- 1 seau ou arrosoir.

Matériaux :
- Les matériaux graveleux pour les réparations localisées doivent être stockés à la carrière ou au centre d’entretien, ou être entreposés le long de la route près du lieu de mise en œuvre (veiller à ne pas obstruer la route ou le système de drainage) ;
- La qualité des matériaux doit être au moins égale à celle de ceux du revêtement existant. La mise en œuvre doit être approuvée par l’ingénieur d’entretien et être conforme aux spécifications ;
- L’eau doit être apportée du dépôt s’il n’est pas possible d’en avoir près du chantier ;
- 1 seau ou arrosoir.

Fréquence d’intervention

Deux fois par an sur le réseau I.
Une fois par an sur le réseau II.
Surveillance-Détection

Entretien courant pris en charge par les centres d’entretien.
Détection des zones concernées par les patrouilleurs.
Reconnaître la section à traiter sur toute sa longueur, pour relever les types de dégradation à réparer et leur importance.
Les réparations localisées peuvent être exécutée par une équipe mobile d’intervention ou par des méthodes manuelles locales.

Sécurité

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.
EPI :
- baudrier ;
- chaussures de sécurité.
Fiche N°2.2 - Reprofilage manuel

Objectifs

Le reprofilage manuel, est la technique la plus couramment utilisée pour reprofiler les routes en terre et les routes empierrées.

Cependant, dans certains cas, du fait des coûts élevés ou de la non disponibilité des matériels spécialisés, le reprofilage manuel peut apparaître comme une option plus appropriée.

Un reprofilage de faible ampleur peut s’inscrire dans le cadre de l’entretien courant.

Un agent de travaux est chargé de l’entretien courant de la route. Sur les routes à faible de trafic (moins de 50 v/j), il est souvent plus approprié que le reprofilage soit effectué sous la forme de reprofilage manuel. Les opérations sont décrites sous le libellé Méthode A : Reprofilage léger.

Un reprofilage plus important exige habituellement une main d’œuvre importante ; l’opération est décrite sous le libellé Méthode B : Reprofilage important.

Le but est de rétablir le profil des routes en terre et des routes empierrées par des méthodes manuelles.

L’objectif consiste en rétablir le bombement en ramenant le matériau des accotements et des bas-côtés vers le milieu de la route, afin d’améliorer l’évacuation de l’eau.

Sur une route dont la surface est plane ou concave, l’eau va s’accumuler, et la circulation va entrainer l’apparition rapide de nids de poule et de dégradations localisées.

Il peut également être nécessaire de reprofiler au niveau des buses et des avaloirs pour améliorer le drainage de la route reprofilée.

Dégradations

Le reprofilage permet de corriger :
- Les déformations du profil en travers ;
- Les ornières ;
- Les nids de poule ;
- La tôle ondulée ;
- Les ravines dues à l’érosion ;
- Les fossés colmatés ou obstrués.

Méthode

Reprofilage Léger

Travaux préliminaires :
- Vérifier l’état et préparer les outils et la signalisation temporaire.

Reprofilage léger :
- Avec la brouette, l’agent de travaux ou le cantonnier transporte les outils et les équipements de sécurité jusqu’au chantier ;
- Placer la signalisation de part et d’autre du chantier ;
-
L'agent de travaux ou le cantonnier ameublit le matériau de la surface avec la pioche à défricher et le répartit avec le râteau pour obtenir le bombement et la pente transversale souhaitée ;
Contrôler le profil à l'aide du gabarit et du niveau à bulle ;
Si des réserves de graves sont disponibles, boucher d'éventuelles flaches locales avec du matériau transporté dans la brouette ;
Compacter le matériau meuble à l'aide de la dame à main.

Reprofilage Important
Cette méthode s'applique lorsque le profil de la route doit être entièrement reprofilé et que le matériau des caniveaux ou des bas-côtés peut être utilisé pour la constitution de la surface de roulement. Elle peut également être appliquée pour un profilage précédant une opération de rechargement.

Sur des routes à faible trafic, le reprofilage important peut être réalisé sans mettre en place de déviation. Il est cependant préférable de fermer la route et de dévier le trafic, au moins pendant les heures de travail.

Dans le cas d'un reprofilage important sur des routes à fort trafic, il est indispensable de fermer la route et de dévier le trafic pendant les heures de travail.

Des mesures de soutien et sécurité sont à prendre concernant :
- Le recrutement des ouvriers ;
- L'établissement d’un camp de chantier temporaire (baraque et facilités pour l’encadrement, stockage de matériel, approvisionnement en eau) ;
- Le paiement des salaires ;
- L’équipement de signalisation et de sécurité.

La méthode de travail comprend les étapes suivantes :
- Implantation ;
- Excavation des fossés ;
- Excavation des talus ;
- Formation de bombement et compactage.

Implantation :
- La méthode d’implantation du PROFIL permet de rétablir un bon tracé du profil en long pour une route dont la surface est gravement dégradée ;
- Le profil en long comprend des rampes et des courbes verticales ;
- Piquer l’axe de la route tous les 10 m ;
- Fixer un jalon au niveau de chaque piquet. Chaque jalon reçoit une mire. La mire peut coulisser le long du jalon et être bloquée à n’importe quelle hauteur ;
- Réaliser l’implantation par sections de 60 à 100 mètres, correspondant approximativement soit à des rampes soit à des courbes verticales ;
- Contrôler que la quantité de terrassement de part et d’autre de chaque piquet (niveau fini) est acceptable; sinon, répeter la procédure en modifiant les valeurs de départ ;
- Une fois les piquets médians en place, planter les piquets délimitant le bord de la route et les deux côtés du fossé en utilisant le mètre ruban, le gabarit et le niveau à bulle d’air pour déterminer le profil souhaité ;
Les piquets doivent être enfoncés soit jusqu’au niveau souhaité du profil en travers, soit jusqu’à une hauteur déterminée au-dessus de ce niveau.

Excavation des fossés et accotements :
- Excaver le matériau du fossé et des accotements et l’utiliser pour former le bombement jusqu’à obtention de la forme souhaitée du fossé et des talus ;
- Contrôler la forme à l’aide des gabarits et du niveau à bulle ;
- Le matériau qui ne peut être utilisé pour former le bombement de la route doit être mis en dépôt bien au-delà du fossé latéral ;
- Si la couche de matériau apporté à une profondeur de plus de 15 cm, il est préférable d’étaler le matériau et de le compacter par couche de 15 à 20 cm au moyen de râteaux et de dames à main ou d’un compacteur à main ou à traction animale ;

Excavation du talus :
- En cas de manque de matériaux pour former le bombement, on pourra retirer du matériau du talus ou de la zone, au-delà du fossé latéral ;

Formation du bombement et compactage final :
- Continuer d’apporter du matériau pour réaliser le bombement souhaité après compactage ;
- Des cordeaux tendus en ligne droite et en diagonale sur la surface de roulement entre les piquets peuvent aider à contrôler la forme ;
- Compacter le matériau jusqu’au profil définitif en utilisant de préférence une dame à main ou un compacteur à traction animale.

Moyens

Reprofilage Léger

Personnel :
- 1 chef d’équipe ;
- 1 ou 2 agents de travaux ou cantonniers pour chaque section de route.

Matériel de mis en œuvre :
- 1 véhicule léger pour la surveillance et d’autres activités générales ;
- 1 gabarit en contreplaqué ou bois, avec niveau à bulle, pour contrôler la pente transversale de la chaussée ;
- 1 gabarit pour fossés et talus avec niveau à bulle ;
- pelles ;
- râteaux et houe ;
- arrosoirs, seaux ou bidons à eau ;
- dame à semelle métallique pour le compactage ;
- balais ;
- pioches ;
- brouettes.

Equipements de signalisation et sécurité
Reprofilage important

Personnel :
- 1 chef d’équipe ;
- 1 contremaître par groupe de 10 à 20 ouvriers ;
- 20 à 40 ouvriers ;
- Auxiliaires si nécessaires (transporteurs d’eau, magasinier, gardiens, mécanicien pour réparer et affuter les outils).

Matériel de mis en œuvre :
- 1 véhicule léger pour la surveillance et d’autres activités générales ;
- 1 gabarit en contreplaqué ou bois, avec niveau à bulle, pour contrôler la pente transversale de la chaussée ;
- 1 gabarit pour fossés et talus avec niveau à bulle ;
- 1 pioche de terrassier pour 10 ouvriers ;
- 1 houe pour 2 ouvriers ;
- 1 pioche à déficher pour 10 ouvriers ;
- 1 pelle pour 2 ouvriers ;
- 1 râteau pour 5 ouvriers ;
- 1 dame à main pour 10 ouvriers ;
- 1 brouette pour 10 ouvriers ;
- 1 machette pour 10 ouvriers ;
- 2 barres à mine ;
- 4 limes (pour affuter les outils) ;
- Hache ;
- Scie ;
- Faux ;
- 10 jalons et mires réglables ;
- 1 mètre ruban (30 mètres) ;
- 2 marteaux de maçon ;
- Piquets en bois ;
- Pelotes de ficelles/sisal ;
- Si disponible : un compacteur à main ou à traction animale.

Equipements de signalisation et sécurité

Fréquence d'intervention

Deux fois par an sur le réseau I.
Une fois par an sur le réseau II.

Surveillance-Détection

Entretien courant pris en charge par les centres d’entretien.
Détection de zones concernées par les patrouilleurs.
Reconnaître la section à traiter sur toute sa longueur pour relever les types de dégradation à réparer et leur importance.
Sécurité

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.
Fiche N°2.3 - Grattage

Objectifs

Le but est d’améliorer la qualité des routes en terre et empierrées par un grattage du matériau de surface existant. Le grattage est normalement un travail d’entretien courant.

Son objectif est de supprimer des défauts mineurs de la surface de la route et de retirer de la chaussée des matériaux mobiles, afin d’offrir au trafic une meilleure surface de roulement.

Sur certaines routes, on ajoute une fine couche de sable pour couvrir le revêtement de base et protéger cela-ci contre l’usure. Un grattage fréquent permet de répartir le sable déplacé par le passage des véhicules.

Le grattage peut être effectué à l’aide d’une niveleuse automotrice tractée. Les niveleuses tractées auront de préférences une masse d’au moins 1 tonne. On peut également utiliser des traîneaux (gratte tôles) spécialement confectionnés à cet effet, tirés par des tracteurs agricoles.

Sur des routes à faible trafic, un grattage fréquent peut permettre de diminuer la périodicité des opérations de reprofilage. D’une manière générale, un reprofilage doit être réalisé après un certain nombre d’opérations de grattage, afin de réintégrer les matériaux meubles dans la surface de la route.

Dégradations

Le grattage permet de corriger :

- Des déformations mineures de la surface

Le grattage ne corrige pas complètement les tôles ondulées apparues dans la chaussée, elle ne rétablit pas le bombement et elle ne compense pas les matériaux disparus. Ces opérations peuvent être résolues par une opération de reprofilage.

Méthode

Travaux préliminaires :

- Vérifier le bon état mécanique, le plein de carburant, ainsi que le niveau d’huile et le bon graissage de tous les matériels et outillages ;
- Vérifier le bon état des traîneaux gratte tôles, ainsi que la présence éventuelle de lest.

Utilisation d’un tracteur et d’un traîneau gratter tôles :

- L’assistant matériel dirige la circulation et aide le conducteur pendant les manoeuvres. Il retire devant le tracteur tous les matériaux indésirables et nettoie le traîneau ;
- Si le travail est exécuté à l’aide d’un tracteur, celui-ci doit travailler dans le sens de la circulation. Le conducteur ne doit pas s’arrêter dans les carrefours ou dans les virages ;
- Le tracteur tire le traîneau gratter tôles à une vitesse maximum de 5 km/h, en fonction du type de traîneau et de l’état de la chaussée ;
- La longueur des passes est indiquée sur la fiche de travail et doit être aussi longue que possible ;
- Le nombre de passes nécessaires dépend de l’état et de la largeur de la route ;
- Les machines doivent travailler dans le sens de la circulation ;
- Ne pas conduire trop vite, pour éviter que le traîneau ne saute par-dessus les irrégularités et ne soulève une poussière excessive, ce qui est dangereux pour la circulation ;
- Ne pas laisser sur la route d’éventuels morceaux de branchage ou de câble détachés du traîneau.

Utilisation de niveleuse :
- Si le travail est exécuté avec une niveleuse automotrice ou tractée, la méthode la plus efficace consiste à utiliser plusieurs niveleuses qui se suivent sur le même tronçon de route ;
- Les niveleuses se suivent pendant plusieurs kilomètres. Sur une route étroite, deux passes de niveleuse peuvent suffire ;
- Veiller à avertir les véhicules venant en sens inverse et à laisser croiser les niveleuses en toute sécurité. Si nécessaire, faire précéder le convoi de niveleuses par un véhicule équipé de signaux lumineux et de panneaux ;
- L’objectif est de retirer les matériaux meubles de la surface de la route et de les répartir de manière uniforme.

Moyens

Personnel :
- 1 conducteur de tracteur et /ou un conducteur de niveleuse ;
- 1 assistant de matériel pour chaque tracteur ou niveleuse automotrice.

Matériel de mise en œuvre :
- 1 niveleuse automotrice, complétée si possible par d’autres niveleuses ;
- 1 tracteur agricole avec 1 niveleuse tractée ou 1 niveleuse gratte-tôle.

Les types de traîneaux gratte-tôle (en ordre croissant d’efficacité) :
- Branchages (petites branche attachées ensembles) ;
- Pneumatiques (vieux pneumatiques de tracteur ou de camion, reliés par des chaînes ;
- Câbles : Faisceaux de câbles attachés ensemble et fixés dans un cadre lesté avec des blocs de béton pour que les pointes de câble puissent entailler le sol. Veiller à ce que des morceaux de câble ne se détachent pas du faisceau et restent sur la route ;
- Poutre métallique : Poutres ou rails, lestés avec des blocs de béton et tractés avec un certain angle par rapport à l’axe de la route ;
- Cadre : Cadre en forme de A confectionné avec de vieilles lames de niveleuses ;
- Tollard : Trois à cinq lames, positionnées sous des angles différents sous un cadre lesté avec des blocs de béton.

Bon usage

Fondamentalement, on distingue deux méthodes de travail :

L’une consiste à étaler le matériau de la ligne médiane vers les deux côtés de la route (Méthode A).

L’autre consiste à étaler le matériau d’un côté de la route à l’autre (Méthode B)

Méthode A :
- La niveleuse travaille du milieu de la route vers les bords ;
- Les accotements sont considérés comme faisant partie de la surface de roulement ;
- Les premières et deuxièmes passes entaillent jusqu’au fond les irrégularités de surface et déposent un cordon de matériau le long de la route. Pour les routes larges, deux passes peuvent être nécessaires pour chaque côté ;
- L’autre moitié de la route est nivelée de manière similaire, de telle sorte qu’il reste une surface régulière et lisse entre les deux cordons.

Méthode B :
- La niveleuse commence d’un côté de la route et travaille vers le côté opposé ;
- Les accotements sont considérés comme faisant partie de la surface de roulement ;
- Les premières et deuxièmes passes entaillent jusqu’au fond les irrégularités de surface et déposent un cordon de matériau au milieu de la route. Pour les routes larges, deux passes peuvent être nécessaires pour chaque côté ;
- Les troisièmes et quatrièmes passes entaillent jusqu’au fond les irrégularités de surface et déplacent le cordon vers l’autre côté de la route.

Dans les deux cas :
- L’assistant de matériel est chargé d’aménager approximativement tous les 10 mètres, des rigoles transversales dans les cordons au bord de la route. Elles permettent l’écoulement de l’eau en cas de pluies inattendues ;
- Les matériaux meubles ayant été retirés de la surface de la route, laissant une surface dure, ce type de grattage ne doit pas nécessiter le passage d’un compacteur ;
- Les cordons ne doivent pas rester au bord de la route pendant la saison des pluies. Ils risquent de former barrage, entrainant une érosion des accotements et des talus,
- Les cordons doivent être réintégrés dans la surface de roulement au moyen d’une opération de reprofilage avant le début de la saison des pluies.
- Ne pas faire une dernière passe au milieu de la route avec la lame de la niveleuse en position horizontale. Cela aplatisrait le milieu de la route, favorisant l’accumulation d’eau, et risquerait d’entrainer une dégradation rapide de la chaussée

Fréquence d’intervention

A la demande des patrouilleurs des centres d’entretiens.
Surveillance-Détection

Entretien courant pris en charge par les centres d'entretien.

Détection des zones concernées par les patrouilleurs.

Reconnaître la section à traiter sur toute sa longueur, pour relever les types de dégradation à réparer et leur importance.

Sécurité

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.
Fiche N°2.4 - Reprofilage mécanisé

Objectifs

Le but est d’améliorer les routes en terre et les routes empierrées par un reprofilage du matériau de surface existant.

L’objectif est de rétablir le bombement en ramenant vers le milieu de la route les matériaux chassés vers les bas-côtés et les accotements. La présence d’un bombement correct facilite l’écoulement de l’eau.

Sur une route dont la surface est plane ou concave, l’eau va s’accumuler. L’association de l’eau et du trafic favorise la formation rapide des nids de poule.

Dans la mesure du possible, les routes doivent être compactées à l’aide de compacteurs après achèvement de l’opération de reprofilage, ce qui améliore la qualité initiale de la surface reprofilée.

La meilleure période pour réaliser une opération de reprofilage est après une période de pluie, car l’humidité contribuera à améliorer la qualité du compactage. Pour certains matériaux, il pourra être nécessaire d’ajouter de l’eau.

Le reprofilage permet également d’entretenir les accotements, fossés et exutoires.

Dégradations

Le reprofilage permet de corriger :
- Les déformations du profil en travers ;
- Les ornières ;
- Les nids de poule ;
- La tôle ondulée ;
- Les ravines dues à l’érosion ;
- Les fossés colmatés ou obstrués.

Méthode

Travaux préliminaires :
- Vérifier l’état des engins,
- Prendre les mesures nécessaires pour refaire le plein de carburant,
- Vérifier l’état et préparer les outils et la signalisation temporaire.

Reprofilage de la surface de roulement :
- Préparation : réparations localisées d’importants nids de poule ou flaches à réaliser au préalable. Le cas échéant, l’eau stagnante doit être évacuée. Cette opération préalable facilite le travail de reprofilage et améliore la durée de vie de la surface nivelée ;
- Scarification : il peut être nécessaire de scarifier la surface existante afin d’éliminer en profondeur d’éventuels défauts de surface et d’ameublir le matériau avant reprofilage ;
- Assistants de matériels : ils aident à régler la circulation et à faciliter les manœuvres de la niveleuse. Ils enlèvent les grosses pierres et objets gênants sur le passage de la niveleuse ;
- Reprofilage : La niveleuse intervient sur un seul côté de la route à la fois et travaille en passes d’une longueur approximative de 200 m entre
deux endroits où elle peut tourner facilement et en toute sécurité,
Un reprofilage léger exige généralement 4 passes pour reprofiler la
route.
Un reprofilage important exige plusieurs passes supplémentaires pour
obtenir le bombement requis. Le Travail doit être exécuté sur un seul
côté de la route à la fois.
Appliquer un nombre pair de passes, pour éviter que la chaussée
 présente un toit aplati,
Habituellement, il faut procéder à des passes initiales d’attaque pour
ramener le matériau vers le milieu de la route. Au moyen de passes
d’étallement, le matériau est de nouveau distribué de l’axe de la
chaussée vers les côtés.
Les passes d’attaque raclent en profondeur les irrégularités de surface
et déposent le matériau en cordon juste au-delà de la ligne médiane.
Si nécessaire, le camion-citerne arrose le cordon.
Le matériau du cordon est ensuite répandu sur la route, afin d’obtenir le
bombement souhaité.
Il peut être nécessaire de renouveler l’arrosage, pour obtenir un taux
d’humidité suffisant pour permettre un bon compactage.
L’objectif est de former un profil en toit correct.
La chaussée doit être bombée suivant une inclinaison, à partir de l’axe,
d’environ 6 à 7 cm par mètre avant compactage. Le résultat final
recherché est une pente transversale après compactage d’environ 4 à
6 cm par mètre (4 à 6%).
Si le bombement est insuffisant, l’eau ne s’écoule pas facilement de la
surface de la route, entraînant la formation de nids de poule et une
rapide dégradation de la route. Cet aspect est particulièrement
important dans le cas de déclivités : l’eau pluviale tend à s’écouler le
long de la route et à former des rigoles d’érosion.

- Ne pas réaliser une dernière passe sur la partie médiane de la route
 avec la lame de la niveleuse en position horizontale. Il en résulterait un
 aplatissement de l’axe de la route où l’eau pourrait s’accumuler et
 risquerait d’entraîner une dégradation rapide de la surface.
- Ne pas laisser un cordon sur la route pendant la nuit, cela peut être
dangereux pour la circulation.
- Contrôle du bombement : Le bombement doit être vérifié à l’aide du
gabarit à des intervalles de 100 m.
- Dans les virages, la surface doit être droite d’un accotement à l’autre
 (à±6%), l’accotement extérieur étant plus élevé (dévers). La présence
 d’un bombement dans un virage peut être dangereuse pour la
 circulation.
 Le dévers doit être appliqué sur toute la longueur du virage.
A la transition entre les deux extrémités du virage et les tronçons droits,
de devers, doit être progressivement réduit jusqu’à retrouver le profil
normal avec un bombement de 5%.
- Le profil de la route doit être conservé au niveau des buses, afin d’éviter
 les dos d’âne. Le cas échéant, il faut apporter du matériau de part et
d’autre de la buse, afin de conserver une couverture au moins égale au
¾ du diamètre de la buse ;
- Les tabliers de ponts ne doivent pas être recouverts de matériaux. Tout
 matériau en excès doit être balayé par les assistants de matériaux. Il est
 important que l’approche du pont soit douce. On pourra utiliser la lame
 de la niveleuse qui se déplace alors en marche arrière ;
- Pour la plupart des opérations de reprofilage, la lame de la niveleuse
doit être placée en position verticale ;

- Dans les cas de surfaces dures, la lame doit être basculée en arrière, pour que l’angle de coupe soit le plus efficace possible ;
- Pour des opérations de régalage, la lame doit être basculée en avant ;
- Pour former un cordon : orienter toutes les roues vers l’avant et positionner la lame en biais.

L’angle doit être suffisamment fermé pour laisser le matériau de surface s’échapper librement au bout de la lame.

Avancer lentement, première vitesse enclenchée, tout en maintenant la lame horizontale et enfoncée de 5 à 10 cm dans le matériau de surface.

Sur les niveleuses qui le permettent, incliner les roues avant dans la même direction que le cordon, afin d’aider à contrer la poussée latérale sur la lame.

Le cordon doit être formé à l’extérieur des roues ou entre les roues arrière.

- Manipulation du cordon : Positionner la lame vers la gauche ou vers la droite, en fonction du travail à effectuer.

L’angle choisi doit laisser le matériau de surface s’échapper librement au bout de la lame.

ADAPTER LA VITESSE ENCLENCHÉE ET LA VITESSE D’AVANCEMENT AU TRAVAIL À EFFECTUER ;

Pour plus de puissance : Orienter la lame vers le cordon. Incliner les roues pour contrer la poussée latérale.

LES ROUES ARRIERES NE DOIVENT JAMAIS ROULER SUR LE CORDON.

Il s’agit des moyens de main d’œuvre, en matériel et outillage et en équipements de signalisation et de sécurité.

Le reprofilage est une opération à progression rapide qui est souvent réalisée à d’importantes distances de la base. Par conséquent, alors qu’elle peut être assurée à l’aide d’une niveleuse automotrice ou tractée, il est préférable d’utiliser des unités mobiles de 2 ou 3 niveleuses et de prévoir des possibilités d’hébergement.

Le nombre et le type de niveleuses, compacteurs, matériels d’arrosage et abris de chantier dépend :

- De l’état de la route (reprofilage important ou peu important) ;
- Des conditions d’humidité ;
- Des exigences de compactage ;
- Des exigences en matière d’organisation ;
- Des dispositions prises pour l’hébergement ;
- Des moyens disponibles.

Préparation du support :

- balayage manuel.
Personnel de mise en œuvre :
- 1 chef d’équipe ;
- 1 opérateur pour chaque niveleuse tractée ;
- Les chauffeurs d’engins et de camions ;
- 1 assistant pour chaque unité de matériel et d’outillage ;
- 1 mécanicien pour l’entretien journalier et les petites réparations ;
- 2 contrôleurs de circulation.

Matériel de mise en œuvre :
- Niveleuses automotrices (reprofilage léger ou important) ;
- Niveleuses tractées par des tracteurs lourds (reprofilage léger ou important) ;
- Niveleuses tractées par des tracteurs légers (reprofilage légers) ;
- Compacteurs (1 ou 2 compacteurs de préférence sur pneumatique. Ils peuvent être automobiles ou tractés) ;
- Camions citernes avec rampe d’arrosage ;
- Pompe à eau pour remplir les camions citernes si les camions n’en sont pas équipés ;
- 1 véhicule léger pour la surveillance et d’autres activités générales ;
- 1 gabarit en contreplaqué ou bois, avec niveau à bulle, embarqué sur la niveleuse pour contrôler la pente transversale de la chaussée ;
- pelles ;
- râteaux et houe ;
- arrosoirs, seaux ou bidons à eau ;
- dame à semelle métallique pour le compactage ;
- balais ;
- pioches ;
- brouettes.

Bon usage

Reprofilage des fossés :
Avant de procéder au reprofilage de la chaussé, il faut curer les fossés.
- Des fossés étroits à fond plat ne sont pas pratiques à entretenir au moyen d’une niveleuse. Ils sont plus faciles à nettoyer à la main.
- Les niveleuses permettent d’assurer l’entretien des fossés en V et des fossés larges à fond plat,
- Les matériaux retirés du fossé ne doivent pas habituellement être répandus sur la surface de roulement. Dans certains cas, si la surface de roulement ne contient pas suffisamment de fines convenables et que le fossé en contient, l’ingénieur peut ordonner qu’on récupère le matériau retiré du fossé et qu’on le mélange aux autres matériaux ;
- Par une première passe, la niveleuse nettoie la paroi du côté de la route et repousse le matériau vers le fond du fossé ;
- Dans le cas du fossé ;
- La passe suivante nettoie la paroi opposée et déplace le matériau vers le haut du fossé ;
- Si possible, éloigner le matériau du bord du fossé par une dernière passe, pour éviter qu’il ne retombe dans le fossé ;
- Après nettoyage, le fossé doit avoir une profondeur d’au moins 1 mètre ;
- Des exutoires doivent être aménagés et entretenus avec une niveleuse. Ils servent à éloigner l'eau du bord de la route, en suivant de près les mouvements du terrain naturel ;
- Les exutoires doivent être plus rapprochés à mesure que la pente devient plus forte ;
- Les évacuations d'eau doivent s'effectuer suivant le principe du « peu et souvent », afin de réduire à un minimum tout risque d'érosion sur les terrains adjacents.

Fréquence d'intervention

1 fois par an sur le réseau I.
1 fois tous les deux ans sur le réseau II.

Surveillance-Détection

Entretien périodique pris en charge par les entreprises locales.
Détection des zones concernées par les patrouilleurs.
Reconnaître la section à traiter sur toute sa longueur, pour relever les types de dégradation à réparer et leur importance.

Sécurité

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.
Fiche N°2.5 - Rechargement granulaire mécanisé

Objectifs

Le matériau de surface des chaussées non revêtues est usé par le passage des véhicules, érodé par la pluie et emporté par le vent.

Avant que tout le matériau de surface n’ait disparu, il faut recharger la chaussée.

Normalement, le rechargement est un travail d’entretien périodique.

Il est important que l’ingénieur d’entretien planifie bien à l’avance les opérations de rechargement pour que les travaux puissent être entrepris avant que les dégradations ne deviennent trop graves.

Avant de procéder au rechargement, il est indispensable de réparer ou d’améliorer, si nécessaire, le bombement et le système d’assainissement de la route. À défaut, la nouvelle chaussée rechargée risque de se dégrader très rapidement.

Le rechargement est normalement réalisé par une couche d’épaisseur de 15 centimètres.

Habituellement, une couche continue de matériaux est posée sur la surface de roulement existante, mais dans certains cas, lorsque seuls de courts tronçons sont gravement dégradés, on procède à une opération de rechargement par zones.

La présente fiche décrit le procédé de rechargement « mécanisé » à l’aide d’engins lourds.

Dégradations

Le rechargement est effectué pour corriger :

- Les pertes de matériaux de surface. Un rechargement est nécessaire avant que les pertes n’atteignent la couche de fondation, ceci se produisant particulièrement dans les ornières et les flaches ;
- Les déformations du profil en travers ;
- Les ornières ;
- Les nids-de-poule ;

Dans ces cas, l’opération de rechargement est précédée par un reprofilage.

Méthode

Travaux préliminaires :

- Prévoir avant le début du chantier, l’approvisionnement en matériaux à la gravière ou à la carrière. Le matériau doit avoir été contrôlé ;
- Prévoir avant le début du chantier, l’approvisionnement en eau à proximité du chantier ;
- Vérifier l’état et la disponibilité des matériels et déterminer pour chaque type de matériel le nombre nécessaire,
- Faire le plein de carburant, vérifier le niveau d’huile et d’eau, vérifier la lubrification, contrôler le bon état mécanique des camions et engins. Prévoir, si nécessaire, le ravitaillement en carburant sur le chantier, soit par le passage d’un camion-citerne, soit par le ravitaillement dans un centre d’entretien. Prévoir une assistance mécanique sur le chantier.
- Hébergement : il peut être nécessaire de prévoir l'hébergement du personnel à proximité du chantier ;
- Préparation du chantier : Dans la mesure du possible, la niveleuse doit ouvrir, avant que les travaux de rechargement ne commencent, une déviation parallèle à la route. Une déviation de la circulation permet de travailler plus efficacement et dans de meilleures conditions de sécurité ;
- Si une déviation n’est pas possible. Si les conditions sont telles qu’il n’est pas possible de mettre en place une déviation de la circulation.

Mise en place de la signalisation temporaire

Exécution des travaux :
- Carrière ou zone d’emprunt : avant de commencer les travaux de rechargement, mettre en tas les matériaux à la carrière ou à la gravière. De même, il peut être utile de commencer à l’avance le transport des matériaux vers le chantier.
- Planifier les extractions et les mises en tas de manière à :
 - Exploiter pleinement la carrière par le prélèvement d’un maximum de matériaux,
 - Stocker la découverte de telle façon qu’elle ne gêne pas l’extension ultérieure et puisse être utilisée pour réhabiliter la carrière,
 - Choisir, les meilleurs matériaux, la qualité du graveleux étant variable au sein d’une même carrière,
 - Stocker le matériau de façon à minimiser la ségrégation,
 - Réduire au maximum la dégradation de l’environnement due à l’érosion et à un drainage insuffisant, tant pendant qu’après l’exploitation de la carrière.
- L’organisation de la carrière doit :
 - Permettre une extraction et un stockage efficaces des matériaux,
 - Permettre aux camions d’entrer et de sortir sans obstacles,
 - Renforce, si nécessaire, la route d’accès à la carrière, afin de favoriser la sécurité des camions,

La surface de la route doit être nivelée à fond afin de préparer une surface solide et régulière ; les côtés doivent être bordés par des planches pour contenir des nouveaux matériaux. Arroser et compacter la surface nivelée.

Vérifier le bombement à l’aide d’un gabarit : la pente transversale de la route doit être de 4 à 6 cm par mètre de largeur (4 à 6%).

Vérifier l’assainissement et le réparer si nécessaire ; un mauvais assainissement est préjudiciable aux performances de la surface rechargée.

A la carrière ou sur l’emprunt (gravière), le bouteur doit avoir préparé suffisamment de matériaux pour le chantier. Les tas formés lors de l’extraction et du stockage doivent être bas et large afin d’empêcher la ségrégation des gros agrégats,

Lorsque le nivellement de la route est achevé, la chargeuse peut commencer le chargement des camions à benne en vue du transport des matériaux vers le chantier de rechargement.

Le surveillant à la carrière doit s’assurer que le matériau est prélevé sur les bons stocks et que les camions sont chargés correctement.

- Faire circuler les camions à benne basculante en continu entre la carrière et le chantier ;
Faire commencer le dépôt de matériaux à l’extrémité la plus éloignée du chantier, pour que les tas ne gênent pas les camions sur leurs trajets ultérieurs ;

Déposer les matériaux sur un seul côté de la route. Respecter les intervalles entre les tas, selon les instructions de l’ingénieur d’entretien, afin d’obtenir l’épaisseur souhaitée de la couche de rechargement sur toute la largeur de la route ;

Si la route n’est pas fermée à la circulation déposer les matériaux sur l’accotement ;

Les camions citernes doivent remplir leur citerne d’eau à l’aide de la pompe, puis se rendre sur le chantier ;

Le régalage des matériaux peut commencer dès qu’une longueur de route d’au moins 200 mètres est approvisionnée ;

Commencer par arroser la route ;

Etaler ensuite le matériau de rechargement sur la route à l’aide de la niveleuse ;

Le matériau est tour à tour étalé par la niveleuse et arrosé par le camion-citerne, jusqu’à ce que la teneur en eau soit suffisante pour le compactage. La quantité d’eau à ajouter est déterminée par l’ingénieur d’entretien, suite aux résultats d’essais effectués sur le chantier ;

Les camions-citernes circulent en permanence entre le chantier et le point d’eau ;

Niveler ensuite le matériau d’apport afin d’obtenir une pente transversale de 4 à 6% ;

Vérifier le bombement avec le gabarit à des intervalles d’environ 100 mètres ;

Utiliser le gabarit de la manière suivante : le placer sur la chaussée, le petit bout pointant vers la ligne médiane. Contrôler le niveau à bulle d’air. Si la bulle est centrée, le bombement est correct. Si elle n’est pas centrée, la pente transversale est trop forte ou trop faible ; dans ce cas, reprendre les opérations de nivellement et de compactage ;

Si la pente transversale n’est pas égale à 4 à 6 cm par mètre (4 à 6%) de largeur sur une route droite, reprendre les opérations de nivellement ;

Lorsque le bombement requis a été réalisé », le compactage peut commencer ;

Ne pas arroser pendant le compactage, le matériau risquant de coller aux roues ou aux cylindres ;

Commencer le compactage par le bord de la route et travailler en allant vers le milieu. Le compacteur doit, de préférence, progresser de section en section au même rythme que la niveleuse ;

En règle générale, huit passes sont nécessaires pour obtenir un bon compactage.

Retrait de la signalisation temporaire

Moyens

Personnel :

- 1 chef d’équipe sur le chantier ;
- 1 chef d’équipe à la carrière ou près du stock de matériau ;
- Les conducteurs d’engins ;
- 1 assistant de matériel par engin ;
Les mécaniciens pour l’entretien quotidien et les petites réparations.

Matériel de mis en œuvre :

La quantité nécessaire de chaque type d’engin dépend de la distance de transport des matériaux et de la disponibilité du matériel

- 1 bouteur ;
- 1 chargeuse sur roues ou chenilles ;
- Des camions à bennes basculantes, en fonction de la distance et de la disponibilité (généralement 4 à 6) ;
- 1 Niveleuse, de préférence d’au moins 135 CV ;
- 1 ou 2 compacteurs ;
- 1 camion-citerne si le matériau à utiliser est sec. Plusieurs camions citernes si l’eau doit être cherchée à grande distance ;
- 1 pompe de capacité suffisante pour remplir les citernes rapidement ;
- 2 véhicules légers pour le transport de l’encadrement ;
- Soutien : Un camion à plateforme surbaissée pour transporter certains engins entre les carrières et chantier successifs. Prévoir le graissage, l’entretien, les petites réparations et le ravitaillement en carburant ;
- Options : Pour des chantiers de rechargement de faible ampleur ou des transports sur courte durée distance (maximum 10 km), il peut être conseillé de simplifier les travaux et équipements décrits dans ce chapitre. Ainsi, le matériau peut être extrait de la carrière et chargé à la main, puis transporté jusqu’au chantier au moyen de tracteurs et remorques.

Outils

- gabarit en contreplaqué ou bois, avec niveau à bulle, pour contrôler la pente transversale de la chaussée ;
- assortiment complet d’outils à main.

Matériaux

- Les matériaux extraits d’une carrière ou d’une gravière doivent répondre qualitativement, aux spécifications et être approuvés par l’ingénieur d’entretien ;
- Il convient de disposer d’un point d’eau aussi près que possible du chantier.

Fréquence d’intervention

1 fois par an sur le réseau I.
1 fois tous les deux ans sur le réseau II.

Surveillance-Détection

Programme d’intervention défini par le ministère.
Marché spécifique avec des entreprises spécialisées.

Sécurité

A adapter en fonction du type de mise en œuvre :
Mise en œuvre par demi-chaussée, sous circulation alternée.
- feux clignotants ;
- panneaux limitation de vitesse ;
- panneaux chaussée rétrécie ;
- cônes.

Mise en œuvre en pleine largeur : mise en place d’une déviation
- panneaux limitation de vitesse ;
- panneau de déviation.

EPI :
- baudrier ;
- chaussures de sécurité.
Fiche N°2.6 - Rechargement granulaire manuel

Objectifs

Le rechargement mécanisé est la technique la plus couramment utilisée pour la réfection d’une surface de roulement empierreée.

Dans certains cas, cependant, du fait des coûts élevés ou de la non disponibilité des matériels spécialisés, le rechargement manuel, avec l’aide d’un tracteur apparaît comme une méthode appropriée.

Si cette option est retenue, on recrute localement de la main d’œuvre pour extraire et charger les matériaux à la carrière et pour les décharger et les étaler sur le chantier routier.

Le transport est assuré par des tracteurs agricoles d’une puissance minimum de 45 CV et des remorques.

Le compactage est effectué par des compacteurs tirés par des tracteurs ou par le passage des remorques chargées.

Cette méthode est habituellement utilisable pour des distances jusqu’à 10 km entre la carrière et le chantier.

Dans les régions où la traction animale est courante, le transport des matériaux peut être assurée de manière économique avec des charrettes sur des distances jusqu’à 3 km.

Pour les distances supérieures à 10 km, le transport par camion s’avère généralement plus économique. Cependant, les camions peuvent être chargés manuellement.

Tâche

Le matériau de surface des chaussées non revêtues est usé par le passage des véhicules, érodé par la pluie et emporté par le vent.

Avant que tout le matériau de surface n’ait disparu, il faut recharger la chaussée.

Normalement, le rechargement est un travail d’entretien périodique.

Il est important que l’ingénieur d’entretien planifie bien à l’avance les opérations de rechargement pour que les travaux puissent être entrepris avant que les dégradations ne deviennent trop graves.

Avant de procéder au rechargement, il est indispensable de réparer ou d’améliorer, si nécessaire, le bombement et le système d’assainissement de la route. A défaut, la nouvelle chaussée rechargée risque de se dégrader très rapidement.

Le rechargement est normalement réalisé par une couche d’épaisseur de 15 centimètres.

Habituellement, une couche continue de matériaux est posée sur la surface de roulement existante, mais dans certains cas, lorsque seuls de courts tronçons sont gravement dégradés, on procède à une opération de rechargement par zones.

La présente fiche décrit le procédé de rechargement par méthode « manuelle avec l’aide d’un tracteur ».
Dégradations

Le rechargement est effectué pour corriger :
- Les pertes de matériaux de surface. Un rechargement est nécessaire avant que les pertes n’atteignent la couche de fondation, ceci se produisant particulièrement dans les ornières et les flaches ;
- Les déformations du profil en travers ;
- Les ornières ;
- Les nids-de-poule ;
- Les ravines dues à l’érosion.

Lorsque celles-ci sont importantes.

Dans ces cas, l’opération de rechargement est précédée par un reprofilage.

Méthode

Travaux préliminaires :
- Lorsqu’il est prévu de réaliser un rechargement par zones, délimiter les sections de la route qui doivent être traitées ;
- Localiser l’endroit où les matériaux doivent être prélevés, prendre, le cas échéant les mesures nécessaires pour les approvisionnements (contrôle des matériaux) ;
- Vérifier que les quantités de matériaux nécessaires sont disponibles ;
- Recruter ou informer la main d’œuvre locale ;
- Établir un camp de chantier temporaire ;
- Prévoir l’approvisionnement en eau ;
- Prévoir le paiement des salaires ;
- Faire le plein de carburant pour les tracteurs, vérifier leur niveau d’huile et d’eau. Lubrifier et vérifier le bon état mécanique de tous les matériels ;
- Prévoir le ravitaillement en carburant sur le chantier, ainsi que l’assistance technique nécessaire ;
- Si possible mettre en place une déviation parallèle à la route avant de commencer les travaux de rechargement.

Des mesures de soutien et sécurité sont à prendre concernant :
- Le recrutement des ouvriers,
- L’établissement d’un camp de chantier temporaire (baraque et facilités pour l’encadrement, stockage de matériel, approvisionnement en eau) ;
- Le paiement des salaires ;
- L’équipement de signalisation et de sécurité.

Mise en place de la signalisation temporaire

Exécution des travaux :

Les travaux comprennent habituellement les étapes suivantes :
- Planification quotidienne ;
Préparation de la surface de la route ;
Préparation de la carrière et/ou de la route d’accès ;
Excavation et mise en tas des matériaux ;
Chargement ;
Transport ;
Déchargement et répandage ;
Compactage ;
Mise en tas des matériaux pour l’entretien courant.

Lorsque la main d’œuvre utilisée est nombreuse, il est important de subdiviser le travail en plusieurs opérations simples et faciles à gérer, afin de favoriser la productivité et la qualité.

<table>
<thead>
<tr>
<th>Activité</th>
<th>Vitesse d’avancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprofilage de la route</td>
<td>20 à 50 m/homme/jour</td>
</tr>
<tr>
<td>Débroussaillage</td>
<td>200 à 1000 m/homme/jour</td>
</tr>
<tr>
<td>Découverte et chargement sur brouette</td>
<td>2 à 4 m³/homme/jour</td>
</tr>
<tr>
<td>Transport de la découverte à la brouette</td>
<td></td>
</tr>
<tr>
<td>0 – 40 m</td>
<td>10,5 m³/homme/jour</td>
</tr>
<tr>
<td>40 – 60 m</td>
<td>8 m³/homme/jour</td>
</tr>
<tr>
<td>60 – 80 m</td>
<td>6,5 m³/homme/jour</td>
</tr>
<tr>
<td>80 – 100 m</td>
<td>5,5 m³/homme/jour</td>
</tr>
<tr>
<td>Extraction du matériau granuleux</td>
<td>1,6 à 2,4 m³/homme/jour</td>
</tr>
<tr>
<td></td>
<td>(en place)</td>
</tr>
<tr>
<td></td>
<td>2 à 3 m³/homme/jour</td>
</tr>
<tr>
<td>Chargement du matériau granuleux</td>
<td>8 à 10 m³/homme/jour</td>
</tr>
<tr>
<td></td>
<td>(foisonné)</td>
</tr>
<tr>
<td>Déchargement et répandage</td>
<td>12 à 16 m³/homme/jour</td>
</tr>
<tr>
<td></td>
<td>(foisonné)</td>
</tr>
</tbody>
</table>
Planification quotidienne

Le nombre de tracteurs, remorques et d’ouvriers à affecter à chaque activité dépend de :

- La quantité de matériaux déjà mis en tas ;
- La distance entre la carrière et le chantier ;
- Le nombre de tracteurs et remorques disponibles ;
- La puissance des tracteurs ;
- L’état de la route entre la carrière et le chantier.

Le plan de travail pour chaque jour doit être préparé à la fin de la journée de travail précédente.

La répartition des tâches doit tenir compte de l’expérience locale, mais les objectifs types résumés dans le tableau ci-dessus peuvent être utilisés comme point de départ.

Préparation de la surface

Après la mise en place des équipements de signalisation, reprofiler la surface existante pour corriger le bombement, suivant les indications de la fiche « reprofilage manuel ».

Si possible, compacter la surface reprofilée.

Vérifier le bombement à l’aide d’un gabarit avec niveau à bulle. La pente transversale doit être de 4 à 6 cm par mètre de largeur (4 à 6%) Vérifier l’assainissement, le remettre en état si nécessaire. Un assainissement en mauvais état est préjudiciable aux performances de la surface rechargée.

Préparation de la carrière et de la route d’accès

Planifier les extractions et mises en tas de manière à

- Exploiter pleinement la carrière par le prélèvement d’un maximum de matériaux ;
- Stocker la découverte de telle façon qu’elle ne gêne pas l’extension ultérieure et puisse être utilisée pour ré habiliter la carrière ;
- Choisir les meilleurs matériaux, la qualité étant variable au sein d’une même carrière ;
- Stocker le matériau de façon à minimiser la ségrégation ;
- Réduire au maximum la dégradation de l’environnement due à l’érosion et à un assainissement insuffisant, tant pendant, qu’après l’exploitation de la carrière.

L’organisation de la carrière doit :

- Permettre une extraction et un stockage efficaces des matériaux ;
- Permettre aux tracteurs et remorques d’entrer et de sortir sans obstacles.

Renforcer, si nécessaire, la route d’accès à la carrière, afin de favoriser la sécurité des tracteurs et remorques.

Extraction et mise en tas

Extraire et mettre en tas les matériaux au moins un jour avant le jour prévu pour le transport.

Extraire et mettre en tas les matériaux sur le côté, afin de faciliter le chargement et d’éviter la multiplication des opérations de manutention.

Si possible, faire réaliser les aires de déblais, pour que les remorques puissent entrer à reculons pour être chargées.

Veiller à ce que les rampes d’accès aux aires de chargement ne soient pas top abruptes pour les tracteurs tirant des remorques chargées.

Dans les carrières à flanc de coteau, extraire le matériau de manière à faciliter le chargement et à assurer la sécurité des ouvriers.
Prévoir suffisamment d'espace pour que les ouvriers puissent travailler confortablement et en toute sécurité.
Prévoir suffisamment d'espace pour que les tracteurs et les remorques puissent manœuvrer aisément.

Chargement

Si possible, prévoir le stationnement des remorques à la même hauteur ou, de préférence, en contrebas par rapport aux stocks, afin de faciliter le chargement.

Répartir l'équipe de chargement en groupes de 4 à 6 ouvriers qui chargent les remorques dans leur ordre d'arrivée à la carrière.

Toutes les remorques doivent être remplies à la hauteur de chargement requise.

Transport

Le rechargement doit commencer là où la route venant de la carrière rejoint la route à recharger.

Au début, la route doit être rechargée simultanément dans les deux sens à partir du point de jonction avec la route venant de la carrière. Tant que les trajets de transport sont courts, cette méthode réduit les embouteillages sur les sites de déchargement.

Lorsque les trajets dépassent 1 km, les opérations doivent être poursuivies dans un seul sens à la fois.

Cette méthode présente plusieurs avantages :

- Les tracteurs et remorques compactent le matériau à mesure qu'ils passent sur le matériau graveleux déjà posé ;
- La dégradation de la route existante est réduite ;
- La circulation due aux opérations de rechargement n'interfère pas avec celle des travaux de reprofilage ;
- Le rechargement peut redémarrer plus rapidement après la pluie.

De préférence, chaque tracteur travaille avec deux remorques, afin d'exploiter au mieux le tracteur.

Déchargement et répandage

Décharger les remorques le plus rapidement possible.

D'une manière générale, 4 ouvriers peuvent travailler sur une même remorque.

Le matériau d'une remorque est déchargé et répandu dans un emplacement délimité par des piquets et une ficelle tendue entre ces piquets. Les piquets sont implantés au niveau fini de la route à l'aide du gabarit et du niveau à bulle.

Concasser d'éventuelles pierre ou agglomérats de graveleux de plus de 5 cm à l'aide d'une masse ; sinon les retirer.
Compactage

Avant compactage, arroser si possible la couche de matériaux en prélevant l'eau dans la citerne tractée.

Compacter la couche de matériaux si possible avec un compacteur à poids mort tiré par un tracteur ou un compacteur vibrant à commande manuelle.

En cas d'absence de matériel de compactage, consolider au mieux le matériau fraîchement répandu par le passage des remorques chargées. Les conducteurs doivent s'efforcer de rouler à chaque passage sur une partie différente de la chaussée.

Moyens

Personnel :
- 1 chef d'équipe sur le chantier ;
- 1 chef d'équipe à la carrière ou près du stock de matériau ;
- 1 conducteur par tracteur ;
- Des ouvriers : en fonction du nombre de tracteurs, de la distance entre la carrière et le chantier, de la productivité ;
- Soutien (si nécessaire) :
 - Mécaniciens pour l'entretien quotidien et les petites réparations,
 - Porteurs d'eau,
 - Magasinier,
 - Gardiens,
 - Affutage et réparation des outils.

Matériel de mis en œuvre :
- Tracteur : Le nombre de tracteurs nécessaires dépend de la distance entre la carrière et le chantier et de leur disponibilité. Le tableau ci-dessous présente des ratios concernant le nombre de tracteurs et d'ouvriers nécessaires pour transporter le matériau sur différentes distances.
- Remorques : Si possible, 2 remorques par tracteur. Cela permet de charger une remorque pendant que l'autre est transportée vers le chantier. la capacité la plus appropriée des remorques est de 3 m³ pour des tracteurs d'une puissance de 45 à 75 CV.
- Divers :
 - 1 compacteur tiré par un tracteur ou un compacteur vibrant à commande manuelle,
 - 1 citerne à eau tractée,
 - 1 citerne à carburant tractée,
 - 1 ou plusieurs véhicules légers pour le transport de l'encadrement.

Outils
- assortiment d'outils à main pour un effectif de 100 ouvriers :
 - 70 pelles,
 - 20 houes,
 - 50 pioches à défricher,
 - 10 machettes,
 - 5 brouettes,
 - 8 barres à mine,
 - 20 râteaux,
 - 4 masses,
 - 2 mètre ruban (30 m),
 - 10 seaux,
 - 5 fûts à eau,
 - 1 gabarit avec niveau à bulle,
- 2 marteaux de maçon,
- Piquets en bois,
- Pelotes de ficelles/sisal,
- 4 limes (pour affuter les outils).

Matériaux
- Les matériaux extraits d’une carrière ou d’une gravière doivent répondre qualitativement, aux spécifications et être approuvés par l’ingénieur d’entretien,
- Il convient de disposer d’un point d’eau aussi près que possible du chantier

Equipements de signalisation et sécurité.

Fréquence d’intervention
1 fois par an sur le réseau I.
1 fois tous les deux ans sur le réseau II.

Surveillance-Détective
Programme d’intervention défini par le ministère.
Marché spécifique avec des entreprises spécialisées.

Sécurité

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.
5. Les Fiches Actions - Dépendances

5.1. Liste des fiches Dépendances

Les dépendances comprennent les accotements et les talus latéraux, ainsi que toutes les surfaces situées dans les limites de la route, entretenues par l’autorité routière.

Bien que ces domaines ne soient pas utilisés normalement pour la circulation, leur entretien contribue à la sécurité des usagers de la route et à la stabilité de celle-ci.

L’entretien des dépendances est une activité d’entretien courant, quoique l’on puisse avoir besoin, occasionnellement, d’avoir recours à des activités d’entretien périodique.

<table>
<thead>
<tr>
<th>N° Fiche</th>
<th>Intitulé</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°3.1</td>
<td>Entretien des accotements</td>
</tr>
<tr>
<td>N°3.2</td>
<td>Entretien des talus</td>
</tr>
<tr>
<td>N°3.3</td>
<td>Bordures et îlots</td>
</tr>
</tbody>
</table>
5.2. Dépendances - Fiches actions

Fiche N°3.1 - Accotement

Objectifs

Le but de l’entretien des accotements est de conserver leur forme et leur géométrie, de manière à ce que :

- Le revêtement de la chaussée ait un soutien latéral adéquat ;
- Les véhicules puissent utiliser, en toute sécurité, les accotements en cas d’urgence ;
- L’eau puisse s’évacuer de la chaussée vers le fossé latéral.

L’entretien des accotements comprend les activités suivantes :

Activités d’entretien courant :
- Eliminer les obstacles ;
- Reprofiler les accotements ;
- Maîtriser la végétation.

Activités d’entretien périodique :
- Rechargement en matériaux.

Dégradations

Obstacle sur l’accotement

Les obstacles pouvant se trouver sur l’accotement sont : Pierres, arbres, branches, tas de terre, débris, véhicule abandonnés.

Les causes principales de la dégradation :
- Matériaux tombés des talus ou des arbres ;
- Matériaux amenés par le vent ou l’eau sur les accotements ;
- Débris laissés par les usagers de la route.

Evolution possible :
- Danger pour les usagers de la route ;
- Obstruction à l’écoulement de l’eau hors de la chaussée.

Remède :
- Enlever les obstacles et les éliminer dans de bonnes conditions de sécurité.
Accotement plus élevé que la chaussée, accotement déformé

Les causes principales de la dégradation :
- Le matériau de la chaussée s’est accumulé sur l’accotement par l’action de la circulation et de l’eau ;
- Le matériau du talus a glissé sur l’accotement ;
- La végétation a bloqué le matériau sur l’accotement ;
- Le matériau de l’accotement a été déplacé par l’action de la circulation.

Evolution possible :
- Les eaux de ruissellement peuvent développer des flaques sur le bord de la chaussée et affaiblir la chaussée et l’accotement ;
- Danger d’accidents ;
- Le fossé latéral peut être obstrué par un excès de matériau.

Remède :
- Reprofiler, à un bon niveau, la surface de l’accotement ;
- Enlever les matériaux en excès ;
- Traiter la végétation.

Accotement plus bas que la chaussée, ornières ou flaches

Les causes principales de la dégradation :
- La circulation sur l’accotement a éjecté des matériaux ;
- L’érosion ;
- Le tassement ;
- Un rechargement de la chaussée a laissé la surface de l’accotement plus basse que la chaussée.

Evolution possible :
- Soutien inadéquat de la structure de la chaussée ;
- L’eau se rassemble et amollit l’accotement et les couches de fondation de la chaussée ;
- Le bord de la chaussée va s’épauffer lorsque les roues des véhicules vont passer dessus ;
- Risque accru d’accident.

Remède :
- Recharger l’accotement.

Végétation excessive sur l’accotement

Les causes principales de la dégradation :
- L’herbe, les plantes, les arbustes ou les arbres ont eu la possibilité de croître sans contrôle.

Evolution possible :
- Les eaux de ruissellement peuvent développer des flaques sur le bord de la plate-forme et affaiblir la chaussée ;
- Le limon s’accumule sur le bord de la chaussée ;
- La visibilité des usagers de la route est réduite, avec un risque accru d’accident impliquant des piétons ou des animaux ;
- Danger accru d’incendie à la saison sèche ;
- La végétation peut endommager la chaussée.

Remède :
- Maîtriser la végétation.
Méthode

Méthode A : Brigade mobile

Travaux préliminaires :
- Pour l’ensemble des matériels (camions, tracteur, etc.) il faudra effectuer le plein des réservoirs de carburant, vérifier le bon état mécanique et contrôler les niveaux d’eau et d’huile ;
- Les panneaux de signalisation, les barrières et les cônes doivent être disponibles et chargés sur le camion ou la remorque ;
- Le matériel et l’outillage doivent être fournis et chargés sur le camion ou la remorque. On peut charger le compacteur au moyen de rampes ou d’un palan ;
- On doit avoir prévu un approvisionnement en eau pour les réparations des accotements ;
- On doit avoir prévu de charger les matériaux sur le camion ou la remorque soit au dépôt, soit à la carrière.

Mise en place de la signalisation temporaire.

Exécution des travaux.

Elimination des obstacles

Il s’agit d’une tâche d’entretien courant.

Les obstacles, tels que les rochers, les arbres ou les branches tombés, les tas de terre, les déchets et les véhicules abandonnés, doivent être chargés sur un camion ou une remorque, ou enlevés de toute autre manière de l’accotement, et déposés dans un endroit sûr. Les matériaux peuvent souvent être répandus sur les talus adjacents en toute sécurité.

Cette activité est souvent pratiquée en même temps que d’autres tâches.

Reprofilage des accotements

Il s’agit d’une tâche d’entretien courant que de réparer les accotements trop élevés ou déformés.

a/ méthode mécanisée

La surface existante de l’accotement doit être scarifiée avec les dents d’une niveleuse à moteur, ou tractée. Ceci amènent la zones surélevées et permettra au matériau ameubli de se loger dans les zones basses existantes.

Les accotements seront alors reprofilés légèrement au-dessus du niveau final et de la pente correcte, en utilisant la lame de la niveleuse à moteur ou tractée.

Il faudra prendre soin de ne pas endommager le bord de la chaussée avec la lame.

La pente du matériau non compacté sera contrôlée avec un gabarit.

Le matériau excédentaire et la végétation seront poussés à la niveleuse sur la pente du côté remblais talus. Lorsque l’on est en déblai, le matériau excédentaire et la végétation seront formés sous forme de cordon afin d’être évacué avec une brouette, un tracteur, une remorque ou un camion. Le matériau ne doit pas être déposé sur la chaussée ou dans le fossé.

Si le matériau est sec il sera arrosé.

L’accotement est alors compacté en utilisant un compacteur automoteur, tracté ou à main.

La surface compactée devra finir doucement en se raccordant avec la chaussée.

Contrôler la pente finale avec le gabarit et procéder à un nouveau profilage si nécessaire.

Balayer tous les matériaux et déchets libres hors de la chaussée.
b/ méthode manuelle

Tous les creux et toutes les bosses de matériaux doivent être ameublies à la pelle-pioche ou à la pioche.

L’accotement sera reprofilé légèrement au-dessus du niveau final et de la pente correcte utilisant une pelle et un râteau.

La pente du matériau non compacté sera contrôlée avec un gabarit.

Le matériau excédentaire sera répandu sur la pente du remblai ou transporté avec une brouette vers un lieu de dépôt convenable et sûr. Le matériau ne doit pas être déposé sur la chaussée ou dans le fossé.

Si le matériau est sec, il sera arrosé.

L’accotement est alors compacté en utilisant des dames ou un rouleau à main.

La surface compactée devra finir doucement en se raccordant avec la chaussée.

Contrôler la pente finale avec le gabarit et procéder à un nouveau profilage si nécessaire.

Balayer tous les matériaux et déchets libres hors de la chaussée.

Maîtrise de la végétation

Il s’agit d’une tâche d’entretien courant comportant la limitation de la croissance de l’herbe, du gazon, des broussailles, des arbustes et des arbres. Sauf dans les zones arides, le fauchage de l’herbe et débroussailles, ainsi que l’élagage des arbustes sur les accotements représentent une activité d’entretien fondamentale. Elle est effectuée au moins une fois l’an, après la saison humide, ou plus souvent là où le climat entraîne une pousse rapide de la végétation.

La plupart des activités nécessaires à cette tâche peuvent être effectuées avec un tracteur agricole équipé d’une faucheuse à lame de coupe, à fléau ou de lames à débroussailler rotatives.

- Le fauchage de l’herbe et l’élagage : L’herbe, les broussailles et les arbustes doivent être coupés au moins une fois l’an après que la végétation ait atteint sa pleine croissance ou selon l’expérience locale.

a/ méthode mécanisée

- Faucher au niveau du sol, libre d’obstacles et de déchets ;
- Ne pas faucher lorsque l’herbe est mouillée, si l’expérience montre que cela n’est pas satisfaisant ;
- Faucher tout l’accotement entre la chaussée et le bord du fossé.

A la place de la faucheuse à lame de coupe tirée par un tracteur, il est possible d’utiliser une faucheuse à moteur à lame de coupe ou à fléau. La faucheuse manuelle aura un rendement inférieur à celui du matériel tirée par un tracteur, mais présente l’avantage de fonctionner sur les pentes de 1 à 1,5.
Là où il n'y a que de faibles surfaces à faucher, une petite tondeuse rotative peut être adéquate

- Une partie de l'équipe doit travailler bien en avant de la faucheuse, enlevant les obstacles, les déchets et les tiges ligneuses situés sur le chemin de faucheuse et qui pourraient endommager les couteaux de la lame ;
- Les fossés doivent être débarrassés de toute la végétation inutile, y compris les zones situées autour des panneaux de signalisation fixes, qui ne peuvent pas être traitées par la faucheuse ;
- Le chef d'équipe doit marquer toutes les zones situées à l'intérieur des courbes qui s'étendent au-delà de l'accotement et du fossé, et où la coupe des arbustes est nécessaire pour améliorer la visibilité des usagers de la route ;
- Les végétaux fauchés laissés derrière les machines doivent être enlevés des accotements. Ratissez-les en tas, à faibles intervalles, et écartez-les à bonne distance de la chaussée de manière à ce qu'ils ne puissent pas obstruer les fossés. Les déchets ne doivent pas être brûlés si cela présentent un danger pour la circulation ou la végétation environnante.

L'utilisation de tout matériel de fauchage ou de coupe est potentiellement dangereuse. Un soin tout particulier doit être pris lorsque l'on utilise ce matériel en évitant tout blocage.

b/ méthode manuelle

Comme alternative au fauchage et dans les zones inaccessibles au matériel motorisé, (en particulier sur les versants des fossés ou sur les pentes trop raides), la végétation doit être tailleée à la main. Des faucilles, faux, machettes, couteaux de brousse, haches, scies et autres outils à main similaires seront nécessaires.

- Les arbres :
Les arbres morts ou penchés situés dans l'emprise et qui peuvent tomber sur la chaussée ou obstruer le système d'assainissement, ou gêner la visibilité doivent être enlevés. L'abattage des arbres, ou l'élagage des grosses branches à une hauteur supérieure à deux mètres au-dessus du niveau du sol peut être dangereux. Ce travail ne peut être effectué que sous une surveillance avertie et par des ouvriers expérimentés.
Les arbres doivent être abattus en utilisant des passe-partout, des tronçonneuses ou des haches. Il faut utiliser des échelles pour monter dans les arbres, et des cordages doivent être utilisés pour retenir les arbres et contrôler l'abattage. La circulation doit être interrompue lorsque l'arbre est près de sa chute. Tous les déchets doivent être enlevés et déposés d'une manière sûre.

- Les désherbants :
Les désherbants, (herbicides) sont des agents chimiques dont le but est de détruire ou de réduire la croissance de la végétation. Il n’est pas recommandé d’utiliser des désherbants ou toute autre méthode chimique pour contrôler la végétation sur le bord des routes. Voici quelques raisons :
 - Le feu peut s’étendre et détruire des végétaux de valeur (arbres, herbe), ainsi que des panneaux de signalisation,
 - La végétation peut repousser encore plus vite après le brulage,
 - La fumée et les flammes entraînées au-dessus de la chaussée sont dangereuses pour la circulation.
Rechargement des accotements

Ceci est une activité périodique que de réparer les accotements qui se sont tassés, ou qui ont été érodés par la circulation et par l’eau. Cette opération est aussi nécessaire lorsqu’un rechargement est appliqué sur la chaussée.

- **a/ méthode mécanisée**

 La surface existante de l’accotement devra être scarifiée avec les dents d’une niveleuse à moteur ou tractée. Ceci ameublira la surface et permettra au matériau ajouté de s’intégrer.

 Le nouveau matériau est déposé ou déchargé sur l’accotement, avec un petit excédent par rapport à ce qui est nécessaire.

 Le matériau ajouté est mis en forme, à un niveau légèrement supérieur au niveau final et à la pente correcte, avec la lame de la niveleuse à moteur ou tractée.

 Il faudra faire attention à ne pas endommager le bord de la chaussée avec la lame.

 La pente du matériau non compacté doit être vérifiée avec un gabarit.

 Le matériau excédentaire sera éliminé par épandage sur la pente du talus de remblai. Dans les sections en déblai, le matériau excédentaire sera réglé en cordon afin d’être enlevé à la brouette, avec le tracteur et sa remorque, ou le camion.

 Si le matériau est sec il sera arrosé.

 L’accotement est alors compacté en utilisant un compacteur automoteur, tracté ou à main.

 La surface compactée sera raccordée doucement à la chaussée.

 Contrôler la pente finale avec le gabarit et refaire le profilage si nécessaire.

 Balayer tout le matériau libre et les déchets hors de la chaussée.

- **b/ méthode manuelle**

 La surface existante de l’accotement devra être scarifiée à la pioche afin de permettre au matériau ajouté de s’intégrer.

 Le nouveau matériau d’accotement est déposé ou déchargé sur l’accotement, avec un petit excédent par rapport à ce qui est nécessaire.

 Le matériau ajouté est mis en forme, à un niveau légèrement supérieur au niveau final et à la pente correcte, en utilisant une pelle ou une houe, et un râteau.

 La pente du matériau non compacté doit être vérifiée avec un gabarit.

 Le matériau excédentaire sera transporté à la brouette pour être utilisé le long de l’accotement ou éliminé en le répandant sur la pente du talus de remblai ou dans un endroit approprié.

 Si le matériau est sec il sera arrosé, en utilisant des récipients ou une petite tonne à eau.

 L’accotement est alors compacté en utilisant une dame à main ou un rouleau à main.

 La surface compactée sera raccordée doucement à la chaussée.

 Contrôler le travail et balayer les déchets comme pour la méthode mécanisée.
Méthode B Main d'œuvre locale

Dans certains systèmes d'entretien des routes, un employé isolé ou un cantonnier vit à proximité d'une route et est responsable des activités d'entretien courant sur cette route.

Les activités suivantes relèvent de cette méthode :
- Enlèvement des obstacles ;
- Reprofilage des accotements ;
- Maîtrise de la végétation (accotements et talus).

De plus, les activités d'entretien périodique suivantes peuvent être effectuées par les cantonniers :
- Recharger les accotements (à petite échelle) ;
- Contrôler l'érosion (certaines techniques).

Travaux préliminaires

- La feuille de travail donnera le lieu et l'étendue du travail à effectuer et le temps requis pour le faire.

Exécution des travaux

- Le cantonnier doit utiliser la brouette pour transporter les outils et les équipements de sécurité sur le lieu de travail ;
- Les panneaux ou les drapeaux seront mis en place de part et d'autre du chantier ;
- Le cantonnier doit utiliser la brouette pour transporter les matériaux entre les tas et le lieu de rechargement ;
- Les tâches sont effectuées comme cela est décrit pour la brigade mobile d'intervention ;
- Les panneaux ou les drapeaux, doivent être retirés après les travaux ;
- Le compte rendu doit être rempli pour chaque jour de travail.

Moyens

Méthode A : Brigade mobile

Personnel :
- 1 contremaître ou surveillant visitant régulièrement ;
- 1 chef d’équipe par tranche de 10 à 20 ouvriers ;
- Les conducteurs d’engins ;
- De 1 à 2 maçons ;
- De 10 à 20 ouvriers ;
- 2 contrôleurs de circulation (lorsque l’on travaille sur les accotements).

Matériel de mis en œuvre :
- 1 véhicule léger ;
- 1 camion benne ou plateau ou 1 semi-remorque (temps partiel) ;
- 1 tracteur de fauchage ou 1 ensemble de débroussailleuse rotative ;
- 1 tracteur et 1 niveleuse tractée, ou 1 niveleuse automotrice ;
- 1 compacteur ;
- 1 camion-citerne avec une pompe à eau ;
- 1 bouteur ;
- 1 chargeur sur roues ou sur chenilles ;
- 2 camions benne supplémentaires.
Outils
- 1 machette, faucille ou faux par ouvrier ;
- 1 râteau ou une fourche à foin par ouvrier ;
- 1 couteau de brousse par ouvrier ;
- 5 binettes pour 10 ouvriers ;
- 5 pelles pour 10 ouvriers ;
- 5 pioches pour 10 ouvriers ;
- 2 masses ;
- 4 dames à main ;
- 2 balais ;
- 2 haches ;
- 2 barres à mine ;
- 2 scies à bûches ;
- 1 passe partout ;
- 2 crochets à brosse ;
- 2 à 8 brouettes ;
- 2 limes (pour aiguiser les outils) ;
- 1 petit compacteur vibrant, ou une plaque vibrante ;
- Des cordages pour l’abattage des arbres ;
- Une échelle pour l’abattage des arbres ;
- Des outils pour la construction des murs de soutènement.

Fourniture :
Pour contrôler la pente de l’accotement un gabarit sera nécessaire, qui est fait d’une planche de contreplaqué ou de bois dur traité de 20 mm d’épaisseur pour donner une pente de 1 à 20 (5 %)
- Des lubrifiants pour le matériel (si nécessaire) ;
- Des étais pour les murs de soutènement (si nécessaire).

Logistique :
Si l’on utilise des méthodes mécanisées pour réparer les glissements ou pour la stabilisation des talus, il faudra disposer d’un chargeur bas pour transporter une partie du matériel vers le chantier et retour.

Matériaux
- Les matériaux destinés aux accotements et obtenus dans une carrière ou une gravière doivent être d’une qualité conforme aux spécifications et être aussi agrées par l’ingénieur de l’entretien ;
- Une source d’eau aussi proche que possible du chantier sera nécessaire pour les réparations des accotements ;
- Matériaux pour la construction des murs de soutènement selon les conceptions et les spécifications :
 - Granulats, sables, ciment,
 - Moellons ou briques pour la maçonnerie, ou parpaings,
 - Paniers de grillages pour les gabions,
 - Fil de fer de 3mm,
 - Pieux en bois,
 - Pierre pour les gabions,
 - Composant de treillis (madrier ou poutres en béton),
 - Sacs de sable.
Méthode B Main d'œuvre locale

Personnel :
- 1 contremaître ou surveillant faisant des inspections régulières ;
- 1 ouvrier ou cantonnier.

Outils
- 1 machette, faucille ou faux par ouvrier ;
- 1 râteau ou une fourche à foin par ouvrier ;
- 1 couteau de brousse par ouvrier ;
- 5 binettes pour 10 ouvriers ;
- 1 balai ;
- 1 pioche ;
- 1 pelle ;
- 1 houe ou une pioche ;
- 1 râteau ;
- 1 dame avec semelle métallique ;
- 1 brouette ;
- 1 seau ou un arrosoir ;
- 1 faucille, une faux ;
- 1 machette ;
- 1 hache ;
- 1 scie de charpentier ;
- 1 lime à aiguiser les outils.

Matériaux
- Des matériaux pour les réparations des accotements doivent être obtenus à la carrière au moyen d’un camion ou d’une remorque. Ceci est fait plus efficacement lorsque des travaux de rechargement sont effectués dans le voisinage de la route ;
- Les matériaux doivent être stockés, pour être utilisés par le cantonnier, dans des endroits adaptés, là où les réparations des accotements sont attendues. Les tas ne doivent pas obstruer la route, les accotements ou les fossés ;
- Là où il n’y a pas de place sur l’emprise de la route, les tas devront être placés en contrebas d’un exutoire afin d’éviter d’obstruer le fossé.

Fréquence d’intervention

Nettoyage et maîtrise de la végétation :
- 2 fois / an sur le réseau I.
- 1 fois / an sur le réseau II.

Rechargement des accotements :
- 1 fois / an sur le réseau I.
- 1 fois tous les deux ans sur le réseau I.
Surveillance-Détective

Entretien courant pris en charge par les centres d’entretien.
Détection des zones concernées par les patrouilleurs.
Reconnaître la section à traiter sur toute sa longueur, pour relever les types de dégradation à réparer et leur importance.

Sécurité

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.
Fiche N°3.2 - Talus

Objectifs

L’objet de l’entretien des talus et des autres surfaces accessoires de la route est de s’assurer que :

- Les talus sont protégés des forces d’érosion potentielle de l’eau, et que sont conservées leurs formes et leur stabilité ;
- Le risque des usagers du fait d’une visibilité réduite, d’animaux en train de pâtir ou du danger d’incendie est minimisé.

L’entretien des talus et des domaines adjacents à la route comprend les activités suivantes :

- Activités d’entretien courant :
 - Maîtriser la végétation.
- Activités d’entretien périodique :
 - Contrôler l’érosion,
 - Réparer les éboulis.

Dégradation

Végétation excessive sur les talus

Les causes principales de la dégradation :

- Insuffisance de fauchage, de débroussaillage et d’étalage

Evolution possible :

- Des branches ou des arbres trop hauts peuvent tomber et obstruer la chaussée ;
- La visibilité des usagers de la route est réduite, avec un risque accru d’accident impliquant des piétons ou des animaux ;
- La végétation peut obstruer le système d’assainissement ou empêcher qu’il soit inspecté ou entretenu ;
- Danger accru d’incendie à la saison sèche ;
- La végétation peut se propager à l’accotement.

Remède :

- Maîtriser la végétation.

Erosion due aux eaux de ruissellement

Les causes principales de la dégradation :

- Les eaux de pluie sont concentrées dans des ravines en haut des talus ;
- La couverture végétale est insuffisante.

Evolution possible :

- Erosion profonde des talus ;
- Glissements de terrain ;
- Obstruction du fossé ou de l’accotement et de l’ensemble des dispositifs d’assainissement.
Remède :
Prévenir l'érosion ou réparer en :

- Créant des bermes ;
- Créant des fossés de crête ;
- Installant des bordures, ou des caniveaux ou des descentes d’eau dans les remblais ;
- Engazonnant ;
- Ensemencant ;
- Installant des clayonnages ;
- Empierrant.

Glissement de terrain

Les causes principales de la dégradation :

- La pente du talus était trop forte pour sa hauteur et pour la nature du sol,
- L’eau a pénétré le talus par le haut,
- Il y a une pression et un écoulement de l’eau de la nappe phréatique.

Evolution possible :

- Le sol du talus peut continuer sa progression vers le bas, obstruant ou coupant la route
- L’eau ne pourra plus s’écouler dans les fossés

Remède :
Il faut procéder à une réparation en :

- Réduisant l’angle du talus,
- Éliminant la terre qui a glissé,
- Surchargeant le talus,
- Installant des gabions,
- Créant des épis,
- Construisant des murs de soutènement en maçonnerie ou sol renforcé.

Méthode

Maîtriser la végétation

C’est une activité courante impliquant la maîtrise des herbes, des broussailles et des arbres.

Les actions visées sont les mêmes que pour les accotements, cependant, la fréquence des opérations peut être réduite.

Le but principal est de conserver la visibilité et le système d’assainissement libre de toute végétation.
Maîtrise de l'érosion

Ceci constitue une activité périodique, quoique le besoin en soit généralement très localisé.

En général, l’érosion est causée par la concentration des eaux de pluie sur les talus ou par le manque de couverture végétale.

Un certain nombre d’options peuvent être mises en œuvre pour réparer les dégâts de l’érosion sur les talus et dans les autres dépendances de la route :

- Des bermes pour les déblais ;
- Des fossés de crête pour les déblais ;
- Des bordures ou des cunettes pour les remblais ;
- L’engazonnement ;
- L’ensemencement ;
- Des marcottages ;
- Des perrés.

Les cordons pour les déblais :

Un cordon peut être construit à la main, le long d’un déblai, afin d’empêcher l’eau de la surface de ruisseler. Le cordon devra être situé de telle sorte qu’il mène toute l’eau vers un endroit sans danger afin de l’éliminer ou de la disperser. Il faudra peut-être ensemencer le cordon afin d’encourager la pousse et la stabilité de la végétation. Le sol ne devra pas être creusé là où l’eau pourrait créer une mare ou s’infiltrer dans la tranchée.

Les fossés de crête pour les déblais :

Ceci produit le même effet que le cordon, mais supportera probablement plus d’érosion et donc, nécessitera plus d’entretien. Un fossé de crête n’est pas adapté aux sols perméables.

- Déterminer l’emplacement et le tracé du fossé à partir d’une inspection sur le site; pas trop près du bord du talus. Suivez le contour naturel de la colline d’aussi près que possible mais avec assez de pente pour que l’eau puisse s’écouler,
- Creuser un fossé d’environ 50 cm de profondeur. Les versants du fossé ne doivent pas être trop abrupts, car alors ils s’effondreront et formeront un obstacle. Le matériel produit par l’excavation devra être répandu en aval du fossé,
- Protéger l’exutoire du fossé si l’érosion est vraisemblable, en utilisant du gazon, des marcottages ou des perrés,
- Surveiller régulièrement le fossé durant la saison humide de manière à ce que les corrections ou les réparations puissent être exécutées immédiatement.

Les bordures ou les cunettes pour les remblais,

Une bordure ou une cunette peuvent être construites au bord de la chaussée ou à l’arrière de l’accotement. La cuvette peut être faite de pierres maçonnées, de béton préfabriqué ou coulé en place. Si la pente est descendante tout le long du remblai, la bordure ou la cunette peuvent évacuer leur eau au droit des saignées d’écoulement. S’il y a un point bas sur le remblai, une descente d’eau sera nécessaire pour évacuer l’eau en toute sécurité le long de la pente.

L’engazonnement,

Cette méthode est adéquate lorsque le climat et les conditions du sol sont favorables et lorsque des mottes (morceaux de terre contenant de l’herbe et ses racines) fraîches sont disponibles.

La procédure générale consiste à :

- Amener la zone à engazonner aux niveaux et pentes requis,
- Là où il n’y a pas de terre arable convenable, apporter de la terre arable et la répandre d’une manière égale sur une profondeur qui ne
sera pas inférieure à 5 cm. Arroser en tant que de besoin,
- Couvrir la surface avec des mottes fraîchement découpées et ne comportant pas de mauvaises herbes. Les mottes doivent présenter un épais matelas de racines n’ayant pas séché. Tasser les mottes avec une dame ou utiliser un rouleau à main. Sur les pentes, utiliser des piquets pour maintenir les mottes en position,
- Arroser régulièrement jusqu’à ce que l’herbe se fixe,

D’autres procédures d’engazonnement consistent à :
- Engazonner par place (les mottes sont placées à 50 cm les unes des autres dans des trous suffisamment profonds pour contenir la motte et 5 cm de terra arable),
- Engazonner en tranchées. Les mottes sont disposées sur un lit de terre arable de cinq centimètres dans des tranchées parallèles. Les tranchées sont espacées de 50 cm le long des contours ou en dispositifs croisé.

L'ensemencement,
L’ensemencement de l’herbe ne sera un succès que si le climat et les conditions de sol sont favorables. On tirera le meilleur avis des services locaux de l’agriculture quant :
- Au type de terre arable requis,
- Au type de semence, et aux quantités à semer,
- Aux types d’engrais, et aux quantités à répandre,
- A la saison et au temps les plus favorables pour l’ensemencement,
- Aux autres traitements préparatoires du sol (par exemple, l’introduction de calcaire broyé).

Procédure habituelle :
- Ameublir le sol sur une profondeur de 10 cm sur la surface à ensemencer, en utilisant des râteaux ou des outils similaires,
- Etaler la terre arable sur au moins 5 cm,
- Arroser la surface à ensemencer,
- Répandre l’engrais selon les quantités spécifiées,
- Répandre le calcaire selon les quantités spécifiées et mélanger,
- Répandre les semences à la main, selon les quantités spécifiées,
- Rouler légèrement la surface ensemencée dans les 24 heures en utilisant un rouleau à main, seulement si la terre n’adhère pas au rouleau,
- La surface ensemencée devra être arrosée en tant que de besoin jusqu’à ce que l’herbe se soit fixée.

Le marcottage,
Il s’agit là de fagots de tiges de plantes allant jusqu’à trois mètres de long, liées ensembles et couchées dans des tranchées peu profondes, piquetées en place selon les courbes de niveau, ou selon des canevas entrecroisés.

Comme dans le cas de l’engazonnement et de l’ensemencement, un climat et des conditions de sol favorables sont essentiels à l’utilisation avec succès du marcottage.

Procédures habituelles :
- Couper les tiges de marcottage dans un lieu de pousse adapté et les transporter sur le chantier immédiatement. Les tiges ne doivent pas se dessécher,
- Lier ensemble des faisceaux de tiges de 15 à 20 cm de diamètre en décalant les extrémités,
- Creuser une tranchée dans le talus, suivant la ligne souhaitée. La tranchée doit être suffisamment profonde pour recevoir les faisceaux de tiges (ce travail peut être effectué au préalable),
- Déposer les faisceaux de tiges dans la tranchée et utiliser des piquets pour les maintenir en place. Superposer les extrémités des faisceaux et mettre des piquets aux superpositions.

● Les perrés :
 Ce travail est généralement limité à des surfaces petites mais importantes, telles par exemple, qu’au droit des ponts et des busines. N’importe quelle pierre brute peut être utilisée pour faire un perré. La taille devra être aussi uniforme que possible et chacune des pierres devrait peser entre 10 et 20 kg. Des pierres plus lourdes seront préférées s’il n’est pas prévu de jointoyer le perré. La pente du talus ne devrait pas excéder 1 à 1,5.
 - Transporter les pierres et les décharger sur le chantier,
 - Compacter le talus jusqu’à la forme souhaitée,
 - Disposer les pierres avec des joints serrés, en commençant au bas de la pente avec les pierres les plus grosses. Les pierres doivent être soutenues par le sol, les pierres les plus petites peuvent être utilisées pour bloquer les autres en place. Les pierres les plus grosses devront être enfoncées plus profondément de manière à ce que la surface supérieure soit uniforme.

Lorsqu’il est prévu de jointoyer le perré :
 - Humidifier les pierres aussi complètement que possible,
 - Combler les interstices entre les pierres avec du mortier (1 part de ciment, 4 parts de sable)
 - Brosser la surface de l’enrochement avec un balai raide,
 - Protéger le travail contre le soleil en utilisant des sacs ou un matériau similaire, et garder humide pendant au moins trois jours.

Réparation d’un glissement de terrain et stabilisation des talus

C’est une activité périodique ou une activité d’urgence.

Les glissements de terrain ou de talus sont généralement causés par des conditions de terrain, d’hydrologie, ou les deux, défavorables. Les travaux curatifs devront être définis par l’ingénieur d’entretien après une inspection du site et es investigations nécessaires.

S’occuper de glissement de terrain et de talus instables est dangereux et un soin particulier doit être pris pour protéger le personnel, le matériel et les usagers.

Les principales actions curatives sont :
 - La réduction de la pente de talus,
 - L’enlèvement des matériaux instables,
 - Le chargement du talus,
 - Les gabions,
 - Le clayonnage,
 - Les murs de soutènement en maçonnerie,
 - Les murs de soutènement en béton.
La réduction de la pente de talus :
Là où le talus a glissé, une des solutions consiste à réduire la pente, ou au moins de la partie supérieure du talus. Ceci augmente la stabilité générale et aidera à prévenir des glissements ultérieurs. Il est souvent conseillé de réduire la pente d’un talus avant que le matériau existant n’ait glissé.
Il faut veiller à ce qu’un nouveau glissement ne se produise. Un bouteur peut être utilisé si l’accès existe et s’il y a peu de risque de provoquer un nouvel éboulement avec du matériel lourd. En cas contraire, les ouvriers pourront creuser la terre et transporter dans un site de dépôt adéquat en utilisant des brouettes.

L'enlèvement des matériaux instables :
Ceci est une activité dangereuse qui doit être planifiée et exécutée avec soin. Le matériau éboulé doit être excavé de telle sorte qu’en permanence, le matériau éboulé et le talus soient stables.
Ne pas travailler sous une pente trop raide car le sol peut glisser à nouveau.
Creuser le sol, si c’est possible ou si c’est nécessaire, pour réduire la pente au sommet du talus avant d’éliminer les éboulis.
- Eliminer tous les éboulis qui se trouvent sur la chaussée, les accotements et les fossés avec un chargeur, ou à la main,
- Charger sur des camions, des tracteurs, des remorques ou dans des brouettes et transporter vers des sites de dépôt sûrs,
- Ne pas creuser trop profond et ne pas endommager la surface de la route ou des accotements lorsque l’on utilise une pelle chargeur,
- Enlever la dernière couche d’éboulis de l’accotement ou de la chaussée à la main,
- Nettoyer le fossé et si nécessaire le reprofiler ou remettre en forme,
- Niveler avec précision l’accotement avec une niveleuse motorisée ou tractée si elles sont disponibles, ou à la main,
- Si la zone doit être protégée contre d’éventuels glissements ultérieurs, la méthode la mieux adaptée ne pourra être déterminée que par une investigation sur le terrain
Si l’on rencontre un écoulement d’eau ou une humidité excessive, une couche de drainage faite de matériaux granulaires, ou de drains, devra être mise en place avant d’entreprendre une quelconque mesure de réparation.

Le chargement du talus
Un talus de déblai avec un large accotement à la base ou un talus de remblai peuvent être chargés pour stabiliser un glissement de terrain sans l’enlever. Ceci implique un élargissement de la base du talus en y plaçant des matériaux pour résister à un nouveau glissement. Le matériau devra être placé en couches de 15 à 20 cm, à la main ou avec un engin, et être compacté avec un rouleau ou des dames à main.
Si l’on craint que l’eau ou l’humidité ne soient la cause du glissement, une couche de drainage faite de matériaux granulaires devra être mise en place avant de déposer le matériau de chargement. Il peut aussi être nécessaire de creuser des drains de pied dans les éboulis afin de permettre à l’eau de s’écouler hors du front du talus. Un soin extrême doit être apporté lors de l’exécution de cette activité.
Les gabions
Un mur de soutènement fait de gabions peut être utilisé pour stabiliser la base d’un talus. Les avantages résident en ce que le mur peut être construit avec un personnel relativement peu spécialisé, qu’il ne requiert pas de drainage et qu’il est suffisamment flexible pour permettre des petits mouvements de glissements ultérieurs.

Les murs caissons
Des murs de soutènement peuvent être construits en utilisant des madriers ou des éléments préfabriqués en béton. Les éléments entrelacés sont mis en place sur une fondation ferme avec un fruit incliné vers l’arrière. Les unités sont remplies de terre (compactée avec des dames) au fur et à mesure que le mur augmente de hauteur. Le mur caisson permet lui aussi quelques fables mouvements de glissement ultérieurs, et peut être reconstruit si nécessaire. Le dimensionnement du mur caisson est effectué par l’ingénieur d’entretien.

Les murs de soutènement en maçonnerie
Là où existe une fondation stable, un mur de soutènement en maçonnerie peut être construit pour soutenir la base de talus instables. Les recommandations sur la construction d’un mur en maçonnerie sont données présentées.

Les murs de soutènement en béton
Là où existe une fondation stable, un mur de soutènement en béton, armé ou non, peut être construit pour soutenir la base de talus instables. Ces murs requièrent des aptitudes de spécialistes pour être conçus et construits qui ne sont pas disponibles dans un service d’entretien. Celles-ci devront être organisées par l’ingénieur d’entretien. Il en est de même d’autres procédés de renforcement des sols, telle la Terre Armée.

Moyens
Personnel :
- 1 contremaître ou surveillant visitant régulièrement ;
- 1 chef d’équipe par tranche de 10 à 20 ouvriers ;
- Les conducteurs d’engins ;
- De 1 à 2 maçons ;
- De 10 à 20 ouvriers ;
- 2 contrôleurs de circulation (lorsque l’on travaille sur les accotements).

Matériel de mis en œuvre :
- 1 véhicule léger ;
- 1 camion benne ou plateau ou 1 semi-remorque (temps partiel) ;
- 1 tracteur de fauchage ou 1 ensemble de débroussailleuse rotative ;
- 1 tracteur et 1 niveleuse tractée, ou 1 niveleuse automotrice ;
- 1 compacteur ;
- 1 camion-citerne avec une pompe à eau ;
- 1 bouteur ;
- 1 chargeur sur roues ou sur chenilles ;
- 2 camions benne supplémentaires.

Outils
- 1 machette, faucille ou faux par ouvrier ;
- 1 râteau ou une fourche à foin par ouvrier ;
- 1 couteau de brousse par ouvrier ;
- 5 binettes pour 10 ouvriers ;
- 5 pelles pour 10 ouvriers ;
- 5 pioches pour 10 ouvriers ;
- 2 masses ;
- 4 dames à main ;
- 2 balais ;
- 2 haches ;
- 2 barres à mine ;
- 2 scies à bûches ;
- 1 passe partout ;
- 2 crochets à brosse ;
- 2 à 8 brouettes ;
- 2 limes (pour aiguiser les outils) ;
- 1 petit compacteur vibrant, ou une plaque vibrante ;
- Des cordages pour l'abattage des arbres ;
- Une échelle pour l'abattage des arbres ;
- Des outils pour la construction des murs de soutènement.

Fourniture :
Pour contrôler la pente de l'accotement un gabarit sera nécessaire, qui est fait d'une planche de contreplaqué ou de bois dur traité de 20 mm d'épaisseur pour donner une pente de 1 à 20 (5 %).
- Des lubrifiants pour le matériel (si nécessaire) ;
- Des étai s pour les murs de soutènement (si nécessaire).

Logistique :
Si l'on utilise des méthodes mécanisées pour réparer les glissements ou pour la stabilisation des talus, il faudra disposer d'un chargeur bas pour transporter une partie du matériel vers le chantier et retour

Matériaux
- Les matériaux destinés aux talus et obtenus dans une carrière ou une gravière doivent être d'une qualité conforme aux spécifications et être aussi agréés par l'ingénieur de l'entretien ;
- Une source d'eau aussi proche que possible du chantier sera nécessaire pour les réparations des accotements ;
- Matériaux pour la construction des murs de soutènement selon les conceptions et les spécifications :
 - Granulats, sables, ciment,
 - Moellons ou briques pour la maçonnerie, ou parpaings,
- Paniers de grillages pour les gabions,
- Fil de der de 3mm,
- Pieux en bois,
- Pierre pour les gabions,
- Composant de treillis (madrier ou poutres en béton),
- Sacs de sable.

Fréquence d'intervention

Entretien Courant : maitrise de l'érosion et de la végétation :
- 2 fois /an sur le réseau I.
- 1 fois /an sur le réseau II.

Réparation d’un glissement et stabilisation :
- Intervention d’urgence.

Surveillance-Détention

Entretien courant pris en charge par les centres d'entretien.

Détection de zones concernées par les patrouilleurs.

Reconnaître la section à traiter sur toute sa longueur pour relever les types de dégradation à réparer et leur importance.

Sécurité

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.
Fiche N°3.3 - Bordures et Ilots

Objectifs

Signaler et corriger les anomalies constatées sur l’infrastructure par le contrôle visuel continu portant sur :
- nécessité d’un nettoyage ;
- réparation de problèmes de maçonnerie (départ de joint, d’éléments...).

Méthode

Les agents d’exploitation ont pour consigne de repérer et signaler les anomalies qu’ils pourraient découvrir sur les bordures.

Le contrôle visuel continu de l’état des bordures permettra de programmer l’Entretien courant et l’Entretien périodique pour maintenir en état les équipements.

<table>
<thead>
<tr>
<th>Défauts</th>
<th>Actions</th>
<th>EC</th>
<th>EP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Départ de joint</td>
<td>Réparation ponctuelle</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Problème de maçonnerie ponctuel (éclat, épaufure)</td>
<td>Réparation ponctuelle</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Problème de maçonnerie important (départ d’éléments)</td>
<td>Pour élément préfabriqué : changement et scellement de nouveaux éléments.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Pour éléments coulés en place : réparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation de salissures, mousse, etc.</td>
<td>Nettoyage</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

EC = Entretien Courant
EP = Entretien Périodique

Fréquence d’intervention

<table>
<thead>
<tr>
<th>Type de défaut</th>
<th>Délai d’intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Départ de joint</td>
<td>Immédiat 2 à 3 semaines</td>
</tr>
<tr>
<td>Problème de maçonnerie ponctuel (éclat, épaufure)</td>
<td>Immédiat 1 semaine</td>
</tr>
<tr>
<td>Problème de maçonnerie important (départ d’éléments)</td>
<td>A programmer en entretien spécialisé 1 mois</td>
</tr>
</tbody>
</table>

Surveillance-Détection

Les agents d’exploitation effectuent des contrôles visuels.
Sécurité

Mise en place d’un balisage pour réaliser les réparations.

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.
6. Les Fiches Actions – Assainissement

6.1. Liste des fiches Assainissement

Sommaire

Le système d’assainissement comprend des fossés, des exutoires, des fossés de crête, des canalisations, des regards, des descentes d’eau, des buses, ainsi d’us des drains enterrés.

L’objectif de ces dispositifs est de rassembler rapidement et conduire les eaux de pluie et les eaux souterraines hors de la route.

L’eau peut causer des dégâts importants à la route en affaiblissant la chaussée ou les fondations, et par l’érosion. Le système d’assainissement est donc une composante très importante d’une route principale ou d’un chemin rural, même dans les régions où les pluies sont occasionnelles.

La thématique Assainissement couvre les fiches suivantes :

<table>
<thead>
<tr>
<th>Numéro Fiche</th>
<th>Intitulé</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°4.1</td>
<td>Fossés</td>
</tr>
<tr>
<td>N°4.2</td>
<td>Collecteurs et buses</td>
</tr>
<tr>
<td>N°4.3</td>
<td>Gués et chaussées surélevées</td>
</tr>
<tr>
<td>N°4.4</td>
<td>Regard et canalisation</td>
</tr>
</tbody>
</table>

Référentiel

Le référentiel est constitué :

- de la base de données des ouvrages d’assainissement depuis la construction constituée à minima :
 - du type d’ouvrages ;
 - des fonctions attendues ;
 - de ses dimensions et notamment du volume mort des bassins ;
 - des PV de réception ;
 - du point zéro ;
 - des informations des rapports des visites, des défauts constatés, de l’analyse de ces défauts, des actions engagées ;
 - des informations liées aux travaux d’aménagement et/ou de réparation effectués sur des ouvrages (nature, quantité, prix, entreprises, dates, etc…).

Elles concernent :

- les ouvrages de collecte des eaux de la plate-forme routière ;
- les ouvrages de collecte des eaux du bassin versant.

L’entretien courant du système d’assainissement est essentiel pour préserver la chaussée et la couche de roulement. De temps à autre, il est nécessaire de procéder à des réparations ou des aménagements importants dans le cadre de l’entretien périodique.

La plupart des activités de l’entretien peuvent être effectuées manuellement. Dans les descriptions de cette partie on suppose que la végétation a été enlevée de la zone entourant les dispositifs d’assainissement de manière à en permettre l’entretien.
Objectif

L’eau peut endommager sérieusement tous les types de routes.

Elle peut :
- Encombrements et dépôts de matériaux
- Eroder les sols,
- Affaiblir les chaussées,
- Détruire les accotements et les talus,
- Emporter les buses, les remblais, voir même les ponts.

Le fonctionnement correct du système d’assainissement est donc une condition vitale pour maintenir la route dans un état satisfaisant.

L’objet de l’entretien de l’assainissement est de faire en sorte que les éléments du système restent libres de toute obstruction, et qu’ils gardent les profils et pentes prévues.

Ils doivent fonctionner correctement de manière à ce que les eaux de pluies ou souterraines puissent séculer librement et rapidement.
6.2. Assainissement - Fiches actions

Fiche N4.1 - Fossés

Objectifs

Activités courantes :
- Dégager et nettoyer ;
- Refaire le profil, la pente, approfondir ;
- Maîtriser l’érosion :
 - Refaire la pente et l’alignement des fossés,
 - Refaire le revêtement,
 - Apporter ou réparer la protection contre l’affouillement.

Activités périodiques :
- Réaliser de nouveaux exutoires ;
- Maîtriser l’érosion :
 - Revêtir le fossé (à nouveau),
 - Construire une descente d’eau et/ou un puisard.

L’entretien régulier des fossés (curage, nettoyage des « embâcles », etc.) permet de garantir la mise hors eau du corps de chaussée et donc sa plus grande pérennité.

A défaut, ces eaux stagnent sur les bords de la chaussée dont elles amorcent la dégradation, détrempant les accotements et entretenant le sol sous chaussée en état d’humidité, ce qui affaiblit sa portance et donc la résistance de la route. Les fossés servent en outre au drainage des couches inférieures de la chaussée en offrant une issue au cheminement des eaux de pluie qui d’infiltrent à travers des accotements et le revêtement de la route.

S’assurer de la continuité de l’écoulement latéral pour prévenir les effets d’une mise en charge du réseau.

Garantir la viabilité du réseau (débordement de fossé, assainissement insuffisant en cas d’événement climatique, …) et prévenir les risques à l’usager ou au riverain.

Dégradations

Les différents types de dégradations dans les fossés :

Obstructions

Causes principales :
- Croissance de la végétation, buissons, arbres tombés, débris/déchets, alluvions, éboulis.

Evolution possible :
- Blocage du fossé

Remèdes :
- Dégager et nettoyer
Envasement

Causes principales :
- La pente du radier est trop plate, l'eau ne peut pas s'écouler à une vitesse suffisante.

Evolution possible :
- Obstruction du fossé.

Remèdes :
- Approfondir le fossé (curage) et/ou mettre en place des exutoires ;
- Lorsqu'il n'est pas possible d'approfondir ou de mettre des exutoires, la construction d'une nouvelle buse, avec une dénivellation à l'entrée, peut être envisagée de manière à assurer le passage de l'eau vers l'autre côté de la route.

Formation de mares dans le fossé et sur les accotements

Causes principales :
- Le profil transversal du fossé est trop petit ;
- La pente du fossé est trop faible.

Evolution possible :
- Le matériau de l'accotement se ramollit et est d'avantage vulnérable à l'érosion. La chaussée peut aussi être inondée et, de ce fait, affaiblie.

Remèdes :
- Approfondir le fossé ;
- Mettre en place de nouveaux fossés d'évacuation.

Le profil transversal du fossé est détruit (fossé non revêtu)

Causes principales :
- Circulation de véhicules ou d'animaux, affouillement.

Evolution possible :
- Il se produira un envasement partiel si les bords du fossé se sont effondrés. L'érosion peut commencer juste après la zone dégradée.

Remèdes :
- Refaire le profil ou la pente du fossé ;
- Revêtir le fossé.

Le radier et les parois du fossé sont érodés

Causes principales :
- La pente du radier est trop raide

Evolution possible :
- L'eau s'écoule à grande vitesse et commence à éroder le terrain. Le fossé devient plus profond (ravinement). Les versants s'effondrent alors, l'accotement, voire même une partie de la chaussée peuvent être emportés.

Remèdes :
- Maîtrise de l'érosion :
 - Refaire la pente et le profil en long,
 - Mettre en place ou réparer la protection contre l'affouillement,
 - Revêtir les parois et le radier du fossé,
 - Construire un dispositif anti-érosion.

Le revêtement du fossé est endommagé

Causes principales :
- Exécution médiocre de la construction ;
- Tassement du terrain, érosion du terrain en dessous du revêtement du fossé ;
- Mauvais profil en long ou changement soudain de la direction de l'écoulement.

Evolution possible :
- Lorsque l'eau qui s'écoule atteint le terrain protégé par le revêtement, l'érosion commence. La quantité de terrain emportée par les eaux augmente, le revêtement est encore plus endommagé par le manque de soutien, ce qui mène à la destruction totale du revêtement.

Remèdes :
- Réparer le revêtement ;
- Reconstituer le fil d'eau du fossé.

Erosion à la sortie du fossé

Causes principales :
- Ecoulement trop rapide ;
- Flux trop concentré par rapport à la résistance du sol.

Evolution possible :
- L'érosion se poursuivra en remontant le fossé et augmentera dans la zone de sortie. L'érosion peut, au stade ultime, menacer la route ainsi que les terrains environnants.

Remèdes :
- Réduire la quantité et la vitesse de l'écoulement en :
 - Reconstituant le fil d'eau du fossé avec une pente plus faible
 - En mettant en place un nouvel exutoire en amont de celui qui existe.
- Réduire l'impact en sortie en :
 - Construisant un dispositif de ralentissement du flux,
 - En construisant un réducteur d’énergie
- Maîtriser l'érosion du terrain en :
 - Procédant à l'engazonnement,
 - Mettant en place un clayonnage,
 - Construisant un perré.

Méthode

Méthode A : Brigade mobile

Travaux préliminaires :
- Pour l'ensemble des matériels (camions, tracteurs...) il faudra effectuer le plein des réservoirs de carburant, vérifier le bon état mécanique et contrôler les niveaux d'eau et d'huile ;
- Les panneaux de signalisation, les barrières et les cônes doivent être disponibles et chargés sur le camion ou la remorque ;
- Le matériel et l’outillage doivent être fournis et chargés sur le camion ou la remorque. On peut charger le compacteur au moyen de rampes ou d’un palan ;
- On doit avoir pris des dispositions pour obtenir de l’eau pour la réparation des buses et des tuyaux.

Exécution des travaux :
Dégagement et nettoyage
Il s'agit d'une tâche d'entretien courant.

Le but est de retirer du fossé toute saleté, végétation de grande taille, matériaux et objets qui pourraient éventuellement s'opposer à l'écoulement de l'eau ou causer un blocage éventuel du fossé. Ceci peut inclure, par exemple, des rochers, du sol, du sable, des mauvaises herbes, des arbres, des buissons, y compris leurs racines, etc. Il faut jeter ces matériaux à bonne distance du bord de la voie de telle sorte qu'ils ne perturbent plus l'écoulement de l'eau et qu'ils ne tomberont pas ou ne seront pas ramenés par l'eau dans le fossé.

Dans le cas de fossés non revêtus, une herbe courte peut aider à stabiliser le fond et les parois du fossé. Donc là où un fossé longitudinal est établi à la bonne profondeur et profilé avec une ouverture herbeuse, sans érosion, il n'est pas conseillé que de couper l'herbe à ras. Cela laissera les racines en place pour stabiliser et lier la surface.

Reprofiler/refaire la pente/approfondir
Il s'agit d'une tâche d'entretien courant qui peut être exécutée avec des méthodes manuelles. Dans certains endroits cela peut nécessiter des méthodes mécanisées.

/ méthode manuelle

Le but est d'enlever des matériaux du fossé pour obtenir le profil en travers et la pente corrects.

Il est conseillé d'adopter une forme de fossé trapézoïdale lorsque l'on utilise les méthodes manuelles. Le creusement à la houe, la pioche et la pelle est plus aisé que pour un fossé en forme de V.

Un gabarit de fossé devrait être utilisé pour obtenir la forme correcte :

- Pour obtenir la forme correcte on réalise tous les 10m une section conforme au gabarit de 0,5m de largeur,
- Dans les régions plates, la pente du fossé devra être contrôlée en utilisant des piges, des profilés ou autres méthodes similaires pour s'assurer que l'eau ne va pas stagner. Les niveaux de sections consécutives doivent être contrôlés en utilisant un cordeau et un niveau, et seront ajustées si nécessaire,
- Il faut creuser tout le matériau excédentaire entre les sections et à la bonne forme en s'aidant de cordeaux tendus entre les sections. Si c'est nécessaire, les niveaux intermédiaires du radié peuvent être contrôlés en utilisant un jalon visé à travers les profils de mires,
- Le matériau retiré du fossé doit être transporté et répandu à bonne distance du fossé de telle sorte qu'il ne puisse pas ultérieurement tomber ou être ramené par l'eau dans le fossé,
- La forme peut être contrôlée durant l'activité de creusement en utilisant le gabarit du fossé,

Lorsque l'on creuse un fossé complètement neuf, il est préférable de scinder le travail en deux opérations :
1- Découper la forme rectangulaire centrale et contrôler avec un gabarit (fond),
2- Découper les côtés et contrôler avec le gabarit entier (versants).

Le profil en long, ou le tracé, du fossé doivent être matérialisés en utilisant des cordeaux et des piqûets.
Les jalons et les mires seront mis en place au commencement et à
l’extrémité du fossé. Des profils intermédiaires seront peut-être nécessaires pour les fossés de grande longueur. Les niveaux des sections intermédiaires peuvent être déterminés en utilisant une pige.

b/ méthode mécanisée

Cette activité est conseillée lorsque de longs linéaires de fossés en forme de V doivent être entretenus et nettoyés, et lorsque des rendements journaliers élevés sont possibles. Cette activité peut être exécutée avec une niveleuse tractée ou automotrice. La niveleuse devra toujours travailler dans le sens de l’écoulement de l’eau dans le fossé.

Cas N°1
Lorsque la niveleuse ne peut travailler que sur l’accotement et dans le fossé, mais pas au-delà de celui-ci :

- Il faut commencer par niveler le versant extérieur du fossé, en repoussant le cordon du matériau au fond du fossé, entre les roues arrières (il est possible de répéter ceci pour obtenir la profondeur de fossé souhaité) ;
- La seconde passe nettoie le fond du fossé en enlevant le cordon vers le bord du fossé du côté de l’accotement ;
- La troisième passe est nécessaire pour écarte le cordon de matériau du bord du fossé, du côté de l’accotement.

Le matériau doit être enlevé du chantier. En aucun cas, le matériau ne doit être répandu sur la chaussée.

- Une fois achevé, le fossé devrait avoir généralement, une profondeur de 50 cm (minimum) ce qui peut être contrôlé par une pige ou une règle et un mètre.
- Si cela est nécessaire, on peut contrôler la pente du fond du fossé en utilisant les méthodes décrites précédemment.

Cas N°2
Lorsque la niveleuse peut travailler au-delà du fossé. Il faut exécuter les opérations décrites ci-dessus en sens inverse.

- Niveler le versant intérieur, en accumulant le cordon de matériau au fond du fossé. Répéter autant que nécessaire jusqu’à obtenir la profondeur de fossé désirée ;
- Déplacer le cordon de matériau vers le haut du versant extérieur ;
- Ecarte le cordon de matériau au bord du fossé et le répandre de telle sorte qu’il ne puisse pas être ramené par l’eau dans le fossé ;
- Une fois achevé, le fossé devrait avoir généralement, une profondeur de 50 cm (minimum) ce qui peut être contrôlé par une pige ou une règle et un mètre ;
- Si cela est nécessaire, on peut contrôler la pente du fond du fossé en utilisant les méthodes décrites au paragraphe sur les méthodes manuelles.
Un certain nombre d’activités courantes peuvent être exécutées pour prévenir ou pour réparer les dégâts de l’érosion aux fossés et cunettes. Des linéaires de fossés sont souvent réalisés avec de fortes pentes ou des courbes serrées sans protection contre l’érosion le long de leur cours ou en sortie. On pourrait prendre les options suivantes en considération :

1- Modifier le profil en long ou le tracé des fossés et cunettes,
2- Réparer le revêtement,
3- Mettre en place une protection contre l’affouillement ou en réparer les effets,

1/ refaire le profil en long ou le tracé :

- Le fossé ou la cunette doit être prolongé avec une sortie plane afin de réduire la vitesse de l’eau à la sortie. La pente idéale se trouve entre 2 et 5% ;
- Le profil en long du fossé doit être réajusté de manière à suivre de plus près les courbes de niveau, jusqu’à ce que soit atteint un point où la sortie peut se faire en toute sécurité.

Les deux options ci-dessus doivent mettre en œuvre les techniques décrites dans le paragraphe « refaire le profil, la pente, la profondeur ».

L’eau ne peut s’écouler calmement dans les courbes serrées. Il en résulte habituellement l’effondrement des parois du fossé. On suggère de procéder aux mesures de réparation suivantes :

- Relier les sections droites de fossé et cunettes par une courbe douce et faire des joints lisses là où ils sont ouverts, ou
- Mettre en place des éléments de fossé courbes préfabriqués.

2/ réparer le revêtement :

Les fossés et cunettes qui ont un revêtement de maçonnerie ou autre ont besoin d’être réparés lorsque ce revêtement est endommagé. La cause d’un tel dommage est en général le tassement du sol support.

Les travaux de réparation doivent être exécutés aussitôt que possible car le fossé peut être rapidement détruit si l’eau peut s’infiltrer en dessous ou derrière le revêtement.

La marche à suivre en est :

- Enlever les éléments en béton ayant tassé ou été endommagé ou les pierres descellées ;
- Compacter le sol sous-jacent ;
- Remblayer avec un matériau adapté et compacter à un niveau correct ;
- Remplacer les éléments en béton ou les pierres en leur donnant un tracé et une pente corrects, en les posant sur un mortier (1 ciment pour 4 sable) ;
- Remplir les joints au mortier ;
- Enlever tous les débris.

3/ Mettre en place/réparer la protection contre l’affouillement :

Les fossés non revêtus peuvent souffrir de l’affouillement du fond des versants

- Il est possible de réaliser des réparations simples en remplissant les parties touchées avec de la terre ou en engazonnant là où les conditions climatiques sont favorables. Les mottes de gazon devront sans doute être fixées en place dans le but de les retenir, et arrosées jusqu’à
reprise de la végétation,

Les dispositifs contre l’affouillement ne doivent pas être trop hauts car alors l'eau sera envoyée sur les terrains environnants, l'accotement ou la chaussée. La construction des dispositifs anti-affouillement devra donc être contrôlée avec l’aide d’un gabarit.

On ne mettra pas de dispositifs anti-affouillement sur des fossés dont les pentes ne dépassent pas 4%. Ceci faciliterait trop le dépôt de limon dans le fossé.

La pente des fossés latéraux doit être contrôlée avec un niveau à alidade, ou avec un cordeau et un niveau à bulle afin de déterminer s’il est nécessaire de mettre en place des dispositifs anti-affouillement.

Une fois les dispositifs anti-affouillement construits, un radier devra être construit immédiatement en aval soit en utilisant des pierres ou des mottes de gazon fixées dans le fond des caniveaux par des piqûres de bois. Le radier aide à résister aux forces de l'eau traversant le dispositif. Des mottes de gazon doivent être appliquées sur la face amont du dispositif afin d'éviter que l’eau ne s’infiltre dans celle-ci et de favoriser de dépôt de limon derrière la barrière. L'objectif à long terme est d’établir une couverture herbeuse complète des dispositifs contre l’affouillement afin de les stabiliser.

- Des mesures plus complètes de lutte contre l’érosion sont décrites ci-après ;

- L’engazonnement, le clayonnage et la confection des perrés offrent des variantes pour protéger les zones situés en aval des exutoires.

Mettre en place un nouvel exutoire

Il s’agit d’une tâche d’entretien périodique

La construction d’exutoire supplémentaire peut s’imposer aux endroits où des mares se forment, où le fossé latéral a un trop fort débit, et où l’érosion se produit.

Des exutoires fréquents empêchent la formation de débits trop importants et permettent une diffusion de l’eau moins brutale dans les terrains environnants, réduisant ainsi les risques d’érosion.

Des exutoires peuvent être nécessaires à des intervalles de 20 mètres sur certaines pentes. Si l’eau ne peut pas être évacuée à moins de 200 mètres du fossé, il faudra prendre d’autres mesures en considération :

- Refaire le tracé du fossé ;

- Construire de nouvelles buses transversales afin d’atténuer le flux de l’eau dans le fossé.
La maîtrise de l'érosion peut nécessiter des tâches d'entretien périodique.

1/ (re)faire le revêtement du fossé :

Lorsqu’un fossé non revêtu est fréquemment endommagé, on peut mettre en place un nouveau revêtement. Le revêtement peut être construit en pierres maçonnées, en briques ou en plaques de béton préfabriquées ou en élément complètement préfabriqués.

Cette opération peut aussi être nécessaire si un revêtement existant est substantiellement endommagé par une mise en œuvre précédente médiocre, ou par des tassements ou de l'érosion.

Le fossé devra être creusé à la main jusqu’au profil plus grand nécessaire.

Après un compactage du terrain naturel avec des dames, les pierres ou les plaques de béton seront scellés et jointoyés au mortier.

2/ Construire une descente d’eau ou un puisard :

Lorsqu’il est nécessaire de conduire le long d’une pente de grande quantité d’eau, un fossé, revêtu ou non, offrira le plus souvent une résistance insuffisante à l’érosion.

Une descente d’eau en cascade devra alors être construite à la place du fossé. De la même manière, un bassin de réception ou un puisard devront être construit à la base d’un caniveau en pente ou d’une descente d’eau.

La descente d’eau et le puisard ralentiront le flux de l’eau et intercaleront le limon afin de réduire le risque d’érosion aval.

La descente d’eau peut être faite en maçonnerie de pierre, de brique ou de béton.

Un puisard peut aussi être construit à un point où le fossé change de direction afin de rester aux forces de l’érosion.

3/ Construire un « étaleur » de flux :

Là où un fossé doit s’écouler sur une pente accentuée ou fragile, le flux de l’eau peut être dispersé par la construction d’un étaleur de flux. Ceci diminuera le risqué d’érosion. L’étaleur de flux peut être construit en maçonnerie de pierre de brique ou de béton.

Moyens

Méthode A : Brigade mobile

Personnel :

- 1 contremaître ou surveillant visitant régulièrement ;
- 1 chef d’équipe par tranche de 10 à 20 ouvriers ;
- Les conducteurs d’engins ;
- De 1 à 2 maçons ;
- De 10 à 20 ouvriers ;
- 2 contrôleurs de circulation (lorsque l’on travaille sur les accotements).
Matériel de mis en œuvre :
- 1 véhicule léger ;
- 1 camion benne ou plateau ou 1 semi-remorque (temps partiel) ;
- 1 tracteur de fauchage ou 1 ensemble de débroussailleuse rotative ;
- 1 tracteur et 1 niveleuse tractée, ou 1 niveleuse automotrice ;
- 1 pompe à eau ;
- 1 bouteur ;
- 1 treuil à main.

Outils
- 1 houe pour chaque homme ;
- 1 pelle pour chaque homme ;
- 5 pioches pour 10 ouvriers ;
- 5 machettes ;
- 5 râteaux ;
- 5 couteaux ;
- 2 masses ;
- 4 dames à main ;
- 2 balais ;
- 2 haches ;
- 2 pinces type monseigneur ;
- 2 scies à buches ;
- 5 brochettes ;
- Des scies de charpentier ;
- 2 marteaux de coffreur ;
- 2 massettes ;
- 2 jeux de ciseaux ;
- 2 limes pour affuter les outils ;
- 1 compacteur à plaque ;
- Des cordes pour manipuler les éléments de buses ;
- Des clous et des chevilles assortis ;
- Une pelle ou pique à long manche pour le nettoyage des buses ;
- Des tiges et des accessoires pour le nettoyage des canalisations ;
- 5 seaux ;
- Des clés à soulever les plaques des regards ;
- Un niveau à bulle ;
- Un cordeau et un niveau ou un niveau à alidade ;
- Un gabarit de fossé avec niveau à bulle ;
- 5 piges et profilés ;
- 2 marteaux de maçon ;
- 2 ciseaux de maçon ;
- 2 truelles de maçon ;
- 2 truelles à joint ;
- 2 flotteurs de maçon ;
- 2 règles (deux mètres) ;
- 2 triples décamètres ;
- 2 mètres pliants (deux mètres) ;
- 2 fils à plomb ;
- 2 cordeaux ;
- 2 brosses à main ;
- 1 boîte à doser les granulats (équivalente à un sac de ciment).

Matériau

- Un approvisionnement en eau sera nécessaire aussi près que possible des chantiers de réparation de la maçonnerie ;
- Matériau pour la réparation des buses, des gués, des regards ou des canalisations, selon les méthodes locales de construction :
 - Gravillons, sable, ciment,
 - Feuille de plastique pour protéger le ciment,
 - De la pierre à maçonner, des briques ou des parpaings,
 - Des paniers de fil de fer pour faire des gabions,
 - Du fil de fer de ligature de 3mm,
 - Des piquets en bois,
 - Des pierres à gabion,
 - Des éléments de buse en béton,
 - Des éléments de buse en tôle ondulée avec accessoires,
 - Canalisation,
 - Plaque de regard,
 - Plastique ou jute pour faire des sacs de sable,
 - Des plaques de revêtement de fossé.

Equipements de signalisation et sécurité.

Fréquence d’intervention

Intervention n’ayant pas de caractère d’urgence sauf en cas de défauts susceptibles de provoquer des risques en matière de sécurité à l’usager ou au riverain (effet d’un débordement sur la chaussée ou sur une parcelle bordant le domaine public).

Entretien courant, nettoyage / curage : 2 fois par an sur le réseau I.
1 fois par an sur le réseau II.

Surveillance-Détection

Surveillance continue dans le cadre du patrouillage pour détecter les zones d’interventions prioritaires.

Sécurité

Mise en place d’un balisage pour réaliser les réparations.

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité.
Fiche N°4.2 – Collecteurs/buses et drains

Objectifs

Activités courantes :
- Dégager et nettoyer ;
- Réparer les dégâts dus à l’érosion ;
- Réparer les fissures ;
- Réparer la voûte et/ou le radier.

Activités périodiques :
- Réparer le radier ;
- Construire ou reconstruire la buse au bon niveau et avec une bonne pente ;
- Construire un bassin de réception.

S’assurer de la continuité de l’écoulement des collecteurs/buses et drains pour prévenir les effets d’une mise en charge du réseau.

Dégradations

Les différents types de dégradations dans les buses :

Envasement, ensablement, obstruction par des débris/déchets

Causes principales :
- La pente du radier est trop faible ;
- La buse est construite trop bas, de telle sorte que les matériaux charriés par l’eau se déposent dans la buse ;
- La végétation ou les débris flottants transportés par l’eau se déposent dans la buse.

Evolution possible :
- La section d’écoulement sera progressivement réduite jusqu’à obstruction. L’eau stagnera ou créera une mare côté amont de la buse et pourra, finalement, franchir la route. La route est alors en danger d’être emportée par les eaux.

Remèdes :
- Dégager et nettoyer ;
- S’il y a un problème de débris flottants, il faudra envisager la mise en place d’une grille à débris/déchets.

Si la buse s’envase régulièrement :
- La reconstruire avec un niveau et une pente correcte.
Fissures de tassement

Causes principales :
- Tassement du terrain situé en dessous de la buse.

Evolution possible :
- Défaut mineur : si le tassement est faible, il n’en résultera que de faibles fissures sur les parements, les ailes et la structure principale. Cela n’affectera que peu le fonctionnement de la structure ;
- Défaut important : si le tassement est sévère, il entraînera un déplacement important des éléments de la buse de telle sorte que le matériau du remblai pénèttera par les fissures et bloquera la buse. Il faudra alors reconstruire la buse.

Remèdes :
- Réparer les fissures ;
- Reconstructuer avec un niveau et une pente corrects.

Le radier de la buse métallique est endommagé par la rouille

Causes principales :
- Galvanisation ou protection de surface de médiocre qualité ;
- Protection de surface érodée par le flux de l’eau et débris/déchets ;
- Usure (après un service de longue durée).

Evolution possible :
- Défaut sérieux au radier, effondrement partiel ou total de la structure.

Remèdes :
- Réparer le radier.

Erosion du lit du fil d’eau à la sortie de la buse

Causes principales :
- Le radier de la buse a été construit selon une pente trop accentuée de telle sorte que l’eau d’écoule trop vite ;
- Le radier de la buse a été construit selon une pente trop faible avec une dénivellation trop importante à la sortie (il s’agit d’erreur de conception ou de construction).

Evolution possible :
- Le lit du fil d’eau est emporté par le courant et une mare ou une ravine se développe. La tête aval de la buse et les murs en aile, voire même une partie de la buse et du remblai de la route peuvent s’effondrer dans la mare ou la ravine.

Remèdes :
- Réparer les défauts de l’érosion ;
- Construire un bassin de réception.

Dégât mineur au mur de tête ou au radier

Causes principales :
- Tassement léger ;
- Affouillement ou érosion.

Evolution possible :
- Erosion au niveau du mur de tête ou du radier ;
- Blocage ou effondrement de la buse.

Remèdes :
- Réparer le mur de tête ou le radier.
Méthode

Brigade mobile

Travaux préliminaires :
- Pour l’ensemble des matériels (camions, tracteurs, etc.) il faudra effectuer le plein des réservoirs de carburant, vérifier le bon état mécanique et contrôler les niveaux d’eau et d’huile ;
- Les panneaux de signalisation, les barrières et les cônes doivent être disponibles et chargés sur le camion ou la remorque ;
- Le matériel et l’outillage doivent être fournis et chargés sur le camion ou la remorque. On peut charger le compacteur au moyen de rampes ou d’un palan ;
- On doit avoir pris des dispositions pour obtenir de l’eau pour la réparation des buses et des tuyaux.

Mise en place de la signalisation temporaire.

Exécution des travaux.

Dégagement et nettoyage

Pour qu’elle puisse fonctionner correctement, une buse doit conserver sa pleine ouverture sur toute sa longueur. De plus, les abords amont et la zone aval doivent être libres de toute obstruction. Les débris/déchets (branches d’arbres, buissons, etc...) et transportés par l’eau représentent un grand danger pour les buses. Les débris/déchets peuvent complètement occulter l’entrée de la buse.

Les activités d’entretien courant suivantes peuvent être nécessaires :
- Si des grilles à débris/déchets existent déjà, celles-ci devront être dégagées de toutes les obstructions accumulées ;
- L’ensablement ou l’envasement des buses, surtout celles dont l’ouverture est inférieure à 1 mètre, posent un problème particulier. Ces buses peuvent être nettoyées en faisant passer un câble ou une corde à travers, câble auquel on attache n’importe quel objet adéquat (par exemple : un seau). Sinon une truelle à long manche ou un pieu peuvent être utilisés. Si le problème de l’envasement se répète en dépit d’un dégagement régulier, il peut être nécessaire de reconstruire la buse à un niveau plus élevé ou de l’agrandir ;
- Les matériaux et les débris provenant de la buse doivent être répandus ou jetés là où ils ne peuvent pas causer une obstruction à l’écoulement de l’eau, de préférence en aval de la buse, à bonne distance du fil d’eau.

Réparation des dégradations dues à l’érosion (courant)

Là où l’on ne constate qu’une faible érosion du lit à la sortie de la buse, il faut procéder comme suit :
- Remplir la zone érodée avec des blocs de pierre d’une dimension de 30 cm environ afin de produire un dissipateur d’énergie efficace. Il serait préférable que l’empierrement s’étende au-delà de la zone érodée. Si l’on dispose de pierres plus grosses, il faudra aussi les utiliser. En saison sèche ou lorsque l’écoulement de l’eau est faible ou inexistant, les blocs peuvent être scellés au béton (1 ciment, 4 sable, 8 granulat) ;
- Là où l’on ne dispose pas de pierres, on peut utiliser des rondins, étalés en travers du lit du courant et atteignant les rives pour l’ancrage. Pour obtenir une meilleure stabilité on utilise des agrafes acier pour lier les rondins les uns et aux autres ;
Des sacs de jute (ou de plastique), remplis de terre peuvent être utilisés en remplacement d’un revêtement pierreux. La terre peut être mélangée à 5% de ciment pour obtenir une stabilité supplémentaire ;

Ne pas trop remplir les sacs. Il faut lier les sacs avec du fil de fer galvanisé ou de la forte ficelle de telle sorte qu’ils ne puissent pas s’ouvrir, même lorsqu’ils sont manipulés rudement,

Disposer les sacs à plat, en couches, les sacs d’une couche recouvrant les joints de la couche sous-jacente.

Réparation des fissures

Les fissures dans le béton ou dans la maçonnerie sont facilement identifiées au cours de la période des basses eaux ou de la période sèche. Il faut les réparer aussitôt que possible.

On procède de la manière suivante :

- Nettoyer toutes les fissures à l’eau et à la brosse. Enlever le vieux mortier de tous les joints endommagés de la maçonnerie et nettoyer les joints ;
- Lorsqu’on dispose d’air comprimé, les dépôts dans les fissures peuvent être facilement enlevés ;
- Humidifier les lèvres des fissures avant de les remplir avec un mortier ;
- Remplir les fissures de mortier ;
- Lisser le mortier à la truelle après remblissage de la fissure.

Réparation du mur de tête

 Là où une partie du mur de tête ou du tablier de maçonnerie ou de brique a été endommagé par l’érosion ou le tassement, une réparation doit être effectuée aussitôt que possible.

La procédure en est :

- Eliminer la section endommagée ou tassée du mur de tête ;
- Compacter le terrain sous-jacent ;
- Reconstituer le mur de tête en utilisant des matériaux semblables aux matériaux d’origine ;
- Remplir tous les joints avec du mortier (1 ciment, 4 sable) ;
- Quand les murs sont suffisamment résistants (après 2 ou 3 jours), remblayer derrière avec de la terre ;
- Enlever tous les débris.

Réparation du radier (périodique)

Les buses métalliques sont atteintes par la corrosion si la galvanisation protectrice ou la couche de protection sont endommagées. Les radiers sont des zones à risque particulier pour ce type de dégât.

Il faut exécuter la réparation dès que l’oxydation commence. Ne pas attendre que les trous apparaissent dans le métal. Commencer les travaux lorsque la buse est asséchée (travail de saison sèche) et que tous les débris ont été enlevés.

Solution A : peinture au bitume

- Enlever, autant que faire se peut, la rouille des sections métalliques, en utilisant une brosse métallique ou autre outil adéquat,
- Réchauffer du bitume dans un réchauffeur de bitume adéquat jusqu’à ce que l’on puisse le verser, mais de préférence pas au-dessus de 100°C ;
- Appliquer une couche épaisse (3 à 4mm) de bitume dans la moitié inférieure de la buse. Le bitume doit être versé et bien étalé sur la
surface. Essayer de réaliser une surface aussi lisse que possible ;

- Le bitume en excès ne doit pas être laissé dans le radier ce qui pourrait permettre une accumulation d’eau

Il faudra être prudent pour le réchauffage et la manutention du bitume, des gants et des vêtements de protection devront être portés

Solution B : revêtement en béton

- Enlever la rouille comme précédemment ;
- Marquer les bords de la dalle béton le long de l’intérieur des parois de la buse en utilisant un cordeau ou une ligne à la craie ;
- Couler une dalle de béton (1 ciment, 2 sable, 4 granulat) d’une épaisseur minimale de 10 cm sur toute la longueur du radier de la buse. La surface de la dalle devra être en pente vers la ligne de centre de la buse et lissée à la truelle ;
- Normalement il ne doit pas y avoir besoin d’armatures ;
- Les radiers à l’entrée et à la sortie doivent être bétonnés en tant que besoin pour s’adapter aux nouveaux niveaux du radier.

(Re) construire la buse à un niveau et à une pente corrects (périodique)

Beaucoup de buses sont installées trop bas parce que l’on a donné la préférence au profil en long de la route lors de la conception et de la construction.

Là où les buses sont implantées trop bas, elles présentent en général des sorties très longues qui s’envasent à répétition tout comme les buses elles-mêmes. Outre le fait que cela nécessite un haut niveau de désensavement et la mise en œuvre de beaucoup de personnel, les matériaux de curage peuvent occuper un terrain agricole de valeur et continuer à croître. Dans ces circonstances, il est conseillé de relever le niveau de la buse en recrassant et en la remettant en place.

De plus, on a parfois installé des buses de diamètre inadéquat. Les buses de moins de 60 cm de diamètre sont extrêmement difficiles à désensasser et la taille optimale pour les besoins de l’entretien est de 1 mètre.

Il faut donc prendre ceci en considération en reconstruisant la buse à un niveau et une pente corrects, avec un diamètre adéquat (60 cm ou plus).

Les buses qui se sont effondrées ou qui sont au-delà de toute réparation doivent être aussi reconstruites. Lorsque les problèmes d’érosion existent dans les fossés longitudinaux, ceci peut être dû à un volume excessif de l’écoulement de l’eau. On peut décider la construction d’une nouvelle buse transversale pour alléger le débit du fossé.

Toutes les buses nouvellement construites ou reconstruites devront l’être selon les conceptions et les spécifications réglementaires.

Il peut arriver que le niveau de la route doive être surélevé sur une distance adéquate de part et d’autre de la buse nouvelle, pour avoir la place nécessaire pour la buse.
Construire un bassin de réception (périodique)

S’il est nécessaire de procéder à une réparation plus substantielle ou permanente que celles décrites précédemment (réparations dues à l’érosion, réparation des murs de tête…), il faut construire un bassin de réception ou un puisard à la sortie de la buse.

Le bassin de réception réduira l’énergie de l’eau et lui permettra de s’écouler vers l’aval avec un risque moindre d’érosion.

Le bassin peut être construit en pierre, en brique ou en béton.

Retrait de la signalisation temporaire.

<table>
<thead>
<tr>
<th>Moyens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entretien courant</td>
</tr>
<tr>
<td>Vérification du bon fonctionnement du collecteur et/ou du drain ;</td>
</tr>
<tr>
<td>Observation du comportement de la chaussée et de l’accotement ;</td>
</tr>
<tr>
<td>Vérification de la stabilité des regards ;</td>
</tr>
<tr>
<td>Nettoyage des regards.</td>
</tr>
<tr>
<td>Entretien spécialisé</td>
</tr>
<tr>
<td>curage par hydrocureuse.</td>
</tr>
</tbody>
</table>

Bon usage

Le contrôle visuel du bon fonctionnement pendant un évènement pluvieux et l’élaboration d’un plan d’intervention prioritaire est essentiel pour l’entretien de l’ouvrage.

Fréquence d’intervention

Lorsqu’un drain se colmate et perd de son efficacité, il peut fonctionner à l’envers et renvoyer l’eau dans le sol, provoquant alors une dégradation de l’accotement et/ou de la chaussée (affaissement, faïençage en rive, etc.).

Si une canalisation n’est pas en état de laisser passer le débit hydraulique nécessaire à l’évacuation des eaux de surface, elle se met en charge et crée des zones d’inondations.

Surveillance-Détention

Surveillance continue par les patrouilleurs pour détecter les zones d’interventions prioritaires.

Sécurité

En cas de mise en charge du réseau, risque d’inondations, d’aquaplanage, de pertes de contrôle du véhicule des usagers de la route.
Fiche N°4.3 – Gués et chaussées surélevées

Objectifs

Activités courantes :
- Petites réparations ;
- Niveler et dégager ;
- Remplacer les jalons de guidage.

Dégradations

Les différents types de dégradations sur les gués, chaussées submersibles et surélevées :

Les surfaces de franchissements submersibles sont souvent constituées par des dalles béton. Il y a un risque important d’emportement ou de mouvement de la dalle causé par la turbulence de l’eau. L’entretien courant doit corriger tous les défauts mineurs au fur et à mesure qu’ils apparaissent, afin d’éviter des travaux importants complets et couteux ultérieurement.

Les activités courantes peuvent comprendre la réparation du béton et de la maçonnerie, la mise en place de gabions et protection des ouvertures de la chaussée surélevée comme dans le cas des buses.

Défauts mineurs

Causes principales :
- Tassement des dalles ;
- Erosion.

Evolution possible :
- Les fissures dans la structure s’étendent et s’élargissent en particulier durant la saison des crues. L’érosion sapera la chaussée et celle-ci se brisera.

Remèdes :
- Petites réparations.

Le Gué ou la chaussée surélevée sont couverts de débris

Causes principales :
- Mouvement naturel du matériau du lit de la rivière dû à l’écoulement de l’eau.

Evolution possible :
- L’usager ne perçoit plus clairement les limites de la chaussée ; les véhicules peuvent s’égarer sur le lit meuble de la rivière au bord du gué et être endommagés ou immobilisés.

Remèdes :
- Niveler, dégager la surface du gué. La surface doit être libre de tout matériau non stabilisé.
Les jalons de guidage manquent ou sont endommagés

Causes principales :
- Accident, dégâts dus aux crues, vandalisme.

Evolution possible :
- Lorsque le gué ou la chaussée surélevée sont couverts d’eau durant les crues, les bords du revêtement ne peuvent être vus. Les véhicules peuvent s’engager en eau profonde.

Remèdes :
- Remplacer les jalons.

Méthode

Méthode A : Brigade mobile

Travaux préliminaires :
- Pour l’ensemble des matériels (camions, tracteurs, etc.) il faudra effectuer le plein des réservoirs de carburant, vérifier le bon état mécanique et contrôler les niveaux d’eau et d’huile ;
- Les panneaux de signalisation, les barrières et les cônes doivent être disponibles et chargés sur le camion ou la remorque ;
- Le matériel et l’outillage doivent être fournis et chargés sur le camion ou la remorque. On peut charger le compacteur au moyen de rampes ou d’un palan.

Mise en place de la signalisation temporaire.

Exécution des travaux.

Petites réparations

Dans le cas de chaussées submersibles (maçonnerie, briques ou béton), les fissures seront remplies d’un mortier bitumineux. Avant le remplissage, enlever toute la terre et le sable et nettoyer à fond avec de l’eau.

Les nids de poule seront ouverts jusqu’à la base de la dalle et ensuite repris de béton (1 ciment, 2 sable, 4 granulats), de pierres scellées au mortier ou de briques selon ce qui convient.

Les cavités dues à l’érosion situées immédiatement en amont ou en aval seront remplies avec des pierres. Dans le cas d’une érosion sérieuse ou régressive, des matelas de gabions devront être disposés dans le lit du cours d’eau qui auront leur niveau supérieur au même niveau ou légèrement au-dessous de celui du gué ou du radier des chaussées surélevées.

Niveler/dégager

De temps à autre, l’eau dépose du limon, du sable et des débris sur le gué ou la chaussée surélevée, et dans ou contre leurs ouvertures.

Ceux-ci doivent être enlevés régulièrement afin d’éviter le danger à la circulation et le risque d’érosion sur le gué et la chaussée.

Les matériaux devront être enlevés à la main et jetés à distance et en aval du franchissement.

Une niveleuse tractée ou automotrice peut être utilisée pour dégager la surface revêtue, cependant, le cordon doit être étalé en aval du franchissement pour permettre le libre passage de l’eau.
Remplacer les jalons de guidage

Le long des gués ou des chaussées surélevées, les jalons de guidage manquants ou endommagés doivent être remplacés avant la saison des crues. Utiliser du tuyau métallique d’un diamètre et d’une longueur appropriés et peints en sections noires et blanches.

- Examiner les embases des tuyaux, enlever l’eau, le sable, le limon, le mortier descellé, etc., s’il y a lieu. La profondeur de l’embase doit être d’au moins 15 cm. Utiliser des marteaux et des burins pour élargir ou approfondir le trou si cela est nécessaire ;
- Placer le tuyau dans son embase et tasser si nécessaire pour corriger la position et la hauteur. Utiliser un mortier (1 ciment, 3 sable) pour remplir l’espace annulaire entre le tuyau et la paroi de l’embase ;
- Les jalons en bois ne sont pas recommandés car ils peuvent se briser facilement. Cependant, des pieux de bois dur peuvent être utilisés s’ils sont correctement ancrés dans l’embase de telle sorte qu’ils ne soient pas emportés par l’eau de la crue suivante.

Bon usage

Le contrôle visuel du bon fonctionnement pendant un événement pluvieux et l’élaboration d’un plan d’intervention prioritaire est essentiel pour l’entretien de l’ouvrage.

Surveillance-Détectio

Surveillance continue pour détecter les zones d’interventions prioritaires.

Sécurité

Risques d’aquaplanage pendant et après les épisodes pluvieux conséquents.
Fiche N°4.4 – Regards et canalisation

Objectifs

Activités courantes :
- Dégager le regard et les tuyaux enterrés ;
- Remplacer la plaque ou la grille du regard ;
- Nettoyer le pourtour du regard ;
- Nettoyer le puisard.

Activités périodiques :
- Repositionner la canalisations.

S’assurer de la continuité de l’écoulement pour prévenir une mise en charge du réseau d’assainissement.

Dégradations

Les différents types de dégradations sur les regards et canalisations :

L’eau sort du regard

Causes principales :
- Le regard ou les conduites souterraines qui y sont raccordées sont bloqués et l’eau ne peut pas s’écouler comme prévu.

Evolution possible :
- Inondation de l’accotement de la route ou de la chaussée ;
- Le système d’assainissement devient inopérant, il y a danger de glissement de terrain ou d’affaiblissement de la chaussée.

Remèdes :
- Dégager le regard et les conduites souterraines.

La plaque ou la grille du regard sont manquantes ou endommagées

Causes principales :
- Accident, vandalisme.

Evolution possible :
- Les regards ouverts deviennent un danger pour l’homme et les animaux. La végétation et les débris peuvent tomber dedans et peuvent alors provoquer une obstruction.

Remèdes :
- Remplacer la plaque ou la grille du regard.

Le regard est couvert de terre et de végétation

Causes principales :
- L’envasement du terrain entourant le regard ; le niveau de la plaque du regard est peut-être trop bas.

Evolution possible :
- Blocage possible du système d’assainissement au niveau du regard, du fait d’une accumulation non décelée de vase dans le regard.

Remèdes :
- Dégager la zone du regard.
Le puisard est complètement envasé

Causes principales :
- La vase et les débris/déchets se rassemblant dans le puisard n’ont pas été enlevé suffisamment et régulièrement.

Evolution possible :
- Blocage possible du système d’assainissement dans le puisard, ou en aval du fait d’une accumulation de vase et débris.

Remèdes :
- Nettoyer le puisard.

Méthode

Brigade mobile

Travaux préliminaires :
- Pour l’ensemble des matériels (camions, tracteurs, etc.) il faudra effectuer le plein des réservoirs de carburant, vérifier le bon état mécanique et contrôler les niveaux d’eau et d’huile ;
- Les panneaux de signalisation, les barrières et les cônes doivent être disponibles et chargés sur le camion ou la remorque ;
- Le matériel et l’outillage doivent être fournis et chargés sur le camion ou la remorque. On peut charger le compacteur au moyen de rampes ou d’un palan.

Exécution des travaux.
- Enlever la plaque ou la grille du regard,
- Avant de pénétrer dans le regard, s’assurer qu’il n’y a pas de gaz toxiques ;
- Enlever tous les débris, le sable et le limon du regard en utilisant des outils à main et des seaux ;
- Si l’eau ne peut toujours pas s’écouler, utiliser une barre depuis le regard situé en aval de l’obstruction jusqu’à ce que l’obstruction cède et que l’eau s’écoule à nouveau ;
- Si le débouchage depuis le regard aval ne réussit pas ou n’est pas possible, pomper l’eau du regard amont et tenter de dégager l’obstruction à partir de ce regard en utilisant des barres ou tiges adaptées.

Dégager les regards et les canalisations enterrées

- Lorsque la plaque ou la grille d’un regard sont endommagées ou cassées, il faut les enlever complètement, sans oublier les morceaux qui peuvent être tombés dans le regard ;
- Lorsque la plaque ou la grille d’un regard manquent, chercher aux alentours. Si on la retrouve intacte, il faut la replacer sur le regard. Il faut s’assurer que la plaque ou la grille sont correctement assises et à niveau sur toute leur périphérie. Cela évite des mouvements indésirables et la rupture ;
- S’il faut mettre une plaque ou une grille neuve, il faut veiller à s’en procurer une nouvelle de la bonne dimension ;
- Si une plaque ou une grille ne peuvent pas être remplaçées immédiatement, procéder à une réparation provisoire en utilisant des planches de bois d’une épaisseur adaptée + signaler le regard.

Remplacer la plaque ou la grille du regard

- Lorsque la plaque ou la grille d’un regard sont endommagées ou cassées, il faut les enlever complètement, sans oublier les morceaux qui peuvent être tombés dans le regard ;
Dégager les abords du regard
- Localiser le regard en utilisant le plan ou par sondages ;
- Enlever la végétation jusqu'à une distance de 2 à 3 mètres à partir du regard et l'éloigner de celui-ci ;
- Déblayer tous les dépôts de limon ou de terre couvrant le regard sur une profondeur d'au moins 10 cm en dessous du niveau de la plaque du regard et sur une distance d'au moins 1 mètre à partir des bords du regard ;
- S'assurer que le regard est libre de sable ou de limon et reposer la plaque.

Nettoyer un puisard
Suivre la même procédure que pour « Dégager les regards et les canalisations enterrées ». enlever tous les débris/déchets et le limon du puisard.

Moyens

Entretien courant
Vérification du bon fonctionnement de l'avaloir : il doit collecter toutes les eaux de surface.
Nettoyage des regards avalois.

Bon usage
Le contrôle visuel du bon fonctionnement pendant un événement pluvieux et l’élaboration d’un plan d’intervention prioritaire est essentiel pour l’entretien de l’ouvrage.

Fréquence d’intervention
Si l’avaloir n’est pas en état de laisser passer le débit hydraulique nécessaire à l’évacuation des eaux de surface, il se crée des zones d’inondations et donc des risques d’aquaplanage.

Surveillance-Détetection
Surveillance continue pour détecter les zones d’interventions prioritaires.

Sécurité
Risques d’aquaplanage pendant et après les épisodes pluvieux conséquents.
7. Fiches Actions – Ouvrage d’Art

7.1. Liste des fiches Ouvrage d’Art

La thématique Ouvrage d’Art couvre les fiches suivantes.

<table>
<thead>
<tr>
<th>Numéro Fiche</th>
<th>Intitulé</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°5.1</td>
<td>Nettoyage général</td>
</tr>
<tr>
<td>N°5.2</td>
<td>Accès à l’ouvrage</td>
</tr>
<tr>
<td>N°5.3</td>
<td>Maîtrise de la végétation</td>
</tr>
<tr>
<td>N°5.4</td>
<td>Evacuation des eaux</td>
</tr>
<tr>
<td>N°5.5</td>
<td>Chaussées d’ouvrage</td>
</tr>
<tr>
<td>N°5.6</td>
<td>Equipements</td>
</tr>
<tr>
<td>N°5.7</td>
<td>Inspection et surveillance</td>
</tr>
<tr>
<td>N°5.8</td>
<td>Défauts mineurs structurels</td>
</tr>
<tr>
<td>N°5.9</td>
<td>Défaut majeurs</td>
</tr>
</tbody>
</table>

7.2. Généralités

Politique de gestion des ouvrages d’art

La gestion du patrimoine des ouvrages d’art se base sur une approche préventive visant à minimiser les risques pour l’infrastructure et s’articulant autour :

- d’une surveillance continue et de visites régulières destinées à détecter les phénomènes à évolution rapide (effets des orages, accidents de la route, etc.), ainsi que les dégradations mettant en jeu la sécurité des usagers (dispositifs de retenue défectueux, risques de chutes d’objets sur les voies franchies, etc.), et les travaux d’entretien courant à programmer ;

- de la réalisation continue des tâches d’entretien courant qui auront été proposées en conclusion de la surveillance continue et des visites annuelles ;

- de la réalisation d’inspections réalisées par des spécialistes, à des intervalles variables qui seront fixées pour chaque ouvrage, en fonction de sa structure et de son environnement ;

Ces inspections permettront de définir et d’analyser plus précisément les dégradations d’ordre structurel, de prioriser les interventions d’entretien spécialisé, d’orienter la surveillance future et éventuellement de décider d’investigations complémentaires.

Buts poursuivis par la politique de gestion des ouvrages d’art

Les buts poursuivis sont de plusieurs ordres :

- maintenir l’état de l’ouvrage pour lui permettre d’assurer sa fonctionnalité, avec le même niveau de service ;

- prévenir les ruptures de viabilité du réseau ;

- détecter les ouvrages à risque ;

- déterminer la politique d’entretien des ouvrages “au mieux”, c’est à dire en choisissant d’affecter les budgets de la manière la plus efficace possible, à la fois sur chaque ouvrage (maintien de la pérennité) et sur
le parc global (maintien de l'état global de service du patrimoine).

S'il est vrai que la dégradation des ouvrages d'art fait appel, en général, et hors événements extérieurs, à des processus dont l'évolution est lente, il n'en est pas moins important de la surveiller pour l'évaluer, et pouvoir prendre, au moment opportun, les bonnes décisions d'entretien ou de réparation. Il s'avère, en effet (des études économiques l'ont montré), qu'attendre trop, mène parfois à des interventions très coûteuses, voire au remplacement des ouvrages.

Par ailleurs, l'expérience montre que la majorité des dégradations, et ce quelles que soient les structures (béton, métal, bois,...), est due aux effets néfastes de l'eau, qu'il s'agisse d'écoulements mal maîtrisés, de zones humides en permanence, de l'utilisation de matériaux mal protégés ou de percolations. Parfois des mesures très simples et peu coûteuses peuvent permettre d'arrêter des phénomènes qui seraient fort préjudiciables à terme, si on les laissait perdurer.

Périmètre

Les ouvrages d'art concernés sont les ponts et ouvrages hydrauliques. Le périmètre concerné inclut :

- l'ouvrage, découpé en parties d'ouvrage ;
- les équipements :
 - sécurité (garde-corps, glissières, barrières de sécurité),
 - fonctionnement / structure (appareils d'appui, joints de chaussée, étanchéité),
 - décoratifs : corniches, revêtements.
- les remblais contigus et perrés ;
- les murs de soutènement ;
- la chaussée sur ouvrage jusqu'aux extrémités des dalles de transition, s'il y en a ;
- les dispositifs d'assainissement de l'ouvrage et de son environnement immédiat (cunettes de recueil des eaux, gargouilles, descentes d'eau, fossés de pied, drains, barbacanes, etc.) ;
- les réseaux fixés sur l'ouvrage ou passant à l'intérieur de celui-ci ;
- les dispositifs de signalisation installés sur ouvrage.

7.3. Pathologies

Le nombre de défauts génériques affectant les ouvrages d'art est important (de l’ordre de 200).

Pour appréhender les pathologies et dans le but de faciliter les analyses, ces défauts sont regroupés en familles affectant un élément de l'ouvrage.

La décomposition adoptée est la suivante (ordre alphabétique) :

- Appareils d’appui ;
- Assainissement, environnement ;
- Chaussée ;
- Corniches ;
- Equipements divers ;
- Etanchéité ;
- Fonctionnement structure ;
- Fondations ;
- Garde-corps ;
- Glissières-barrières ;
- Joints ;
- Murs de soutènement ;
- Parements béton ;
- Parements métal ;
- Trottoirs.
7.4. Ouvrage d’art - Fiches actions
Fiche N°5.1 – Nettoyage général

Objectif

Lorsque le pont franchit un cours d’eau ; l’eau doit pouvoir s’écouler librement à tous les niveaux de crue sans endommager le pont, et sans créer d’affouillement au niveau des appuis.

Enlèvement d’embâcles

Dégradations - Causes

L’accumulation d’embâcles, corps flottants ou non au droit des brèches hydrauliques réduit la section et peut générer des poussées horizontales importantes pour lesquelles les ouvrages n’ont pas été prévus.

Conséquence : Ruine possible de l’ouvrage en cas de crue.

Interventions nécessaires

- Enlever et récupérer les embâcles au fur et à mesure de leur blocage au droit de l’ouvrage ;
- Evacuer et récupérer les branches et les branchages ou les arbustes ;
- Enlever et récupérer les troncs d’arbres, les rouleaux de paille.

Moyens nécessaires

- Gaffe ou grappin, fourche ou croc pour l’évacuation de branchages avec en compléments :
 - Tronçonneuse, élingue, tire-fort (point fixe) pour enlèvement d’arbustes ou de branches.
 - Pelle mécanique à partir du tablier mais après vérification de la résistance de l’ouvrage.

Modes opératoires

Délai d’intervention

Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance continue.

Enlèvement d’affiches

Dégradations - Causes

La couverture des parements des ouvrages par des affiches dissimule l’état de ceux-ci aux yeux des visiteurs d’ouvrages.

Conséquences :

- Les désordres peuvent se manifester à l’insu des gestionnaires.
- Atteinte à l’environnement visuel.

Interventions nécessaires

Procéder à l’enlèvement des affiches au moins une fois par an, à l’occasion du contrôle bi-annuel.
Moyens nécessaires
Seau, éponge, pulvérisateur, brosse métallique, échelle, raclette, brûleur, nettoyeur HP.

Modes opératoires
Enlèvement par arrachage ou utilisation de décollant.

Attention aux produits chimiques : n’utiliser que des produits ne nuisant pas à l’environnement et vérifier plus particulièrement leur condition d’emploi en site aquatique.

En cas de difficultés, utilisation de matériel spécifique : brûleur ou nettoyeur HP.

L’utilisation du brûleur doit être faite sans insister pour ne pas chaussé le parement.

Pour le nettoyeur HP, il faut limiter la pression à 8 MPa (80 bar) pour éviter d’endommager les parements.

Délai d’intervention
Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Enlèvement des graffitis

Dégradations - Causes
Peu de dégradation pour les ouvrages d’art.

Risque d’inscriptions diffamatoires, altération du cadre de vie surtout en milieu urbain.

Attention, un graffiti en appelle d’autres.

Interventions nécessaires
Faire disparaître les inscriptions diffamatoires.

Moyens nécessaires
Brosse métallique, seau, pulvérisateur, éponge.

Brûleur, bosse métallique.

Peinture et matériel d’application.

Modes opératoires
Pulvérisation d’un dissolvant puis rinçage.

Attention aux produits chimiques : n’utiliser que des produits ne nuisant pas à l’environnement et vérifier plus particulièrement leur condition d’emploi en site aquatique.

Ou

Brûlage de la peinture, sans excès, afin de ne pas noircir le support.

Ou

Par recouvrement à la peinture de couleur appropriée.

Un enlèvement trop systématique des graffitis peut conduire à augmenter leur fréquence d’application. On pourra ne procéder qu’à l’enlèvement des seuls graffitis à caractère diffamatoire.

Le recouvrement par peinture nécessite l’application de plusieurs couches pour faire réellement disparaître les graffitis.
Délai d'intervention

Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Intervention dont la fréquence est parfois difficile à supporter.

Nettoyage des chaussées

Dégradations - Causes

Dépôts de matériaux en bordure de chaussée ou dans le caniveau gênant l'évacuation des eaux, et entraînant sa stagnation et des risques d'infiltration dans l'ouvrage.

Interventions nécessaires

Balayage manuel ou mécanique.

Moyens nécessaires

Pelles rectangulaires, balais, curette, brouette, fourgon permettant l'évacuation des produits du balayage.

Éventuellement balayeuse mécanique travaillant sous surveillance des agents (nettoyage des évacuations d'eau).

Travail sous circulation, donc signalisation de chantier nécessaire.

Modes opératoires

Manuellement, décoller les dépôts plus ou moins adhérents, puis opérer un balayage.

Pour les grands ouvrages et les ouvrages en milieu urbain, ou supportant une voie très fréquentée, l'utilisation d'une balayeuse aspiratrice est recommandée car elle limite les gênes à la circulation ; son intervention doit être programmée.

Attention : veillez à ne pas obstruer les évacuations d'eau - nettoyage simultané. Ne pas rejeter dans le milieu naturel les déchets collectés.

Délai d'intervention

Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Joints de chaussées

Objectif

Fonction : permet les mouvements relatifs (dilatation) entre le tablier et ses appuis ou deux éléments de structure, assure la continuité de la surface de roulement.

Constitution : joints de chaussée à composants métalliques, joints à revêtement amélioré.

ATTENTION : les décalages dans un plan vertical ou les décalages transversaux des joints de dilatation peuvent être le signe de désordres importants de fonctionnement de la structure. Les ouvertures anormales (ouverture totale ou butée) peuvent également être un signe de désordre grave. Pour tous ces examens, il conviendra toujours de comparer une extrémité du tablier à l'autre.
Toute butée du joint dans le sens longitudinal ou transversal (que la butée soit due à un objet d’apport extérieur ou du fait du fonctionnement de l’ouvrage), la rupture d’éléments), ou tout autre défaut visuel (usure, déformation, choc, déchirure, décollement, fissure, arrachement du remplissage) ou sonore (battement, claquement au passage des véhicules) constatés sont préjudiciables à l’intégrité du joint.

Avant toute intervention autre qu’une intervention de sécurité, il faut vérifier si le joint ne bénéficie pas d’une garantie, auquel cas, il conviendra de faire revenir l’entreprise qui l’avait fourni et posé.

Dégradations

Salissures diverses incrustées :
- dépôts empêchant le fonctionnement des joints de chaussée, nettoyage insuffisant, joints insuffisamment autonettoyants, défaut de trafic.

Interventions nécessaires

Salissures diverses incrustées :
- balayage de surface ;
- enlèvement des gravillons et autres éléments bloquants.

Moyens nécessaires

Alternat de circulation éventuel, agents. Salissures diverses incrustées :
- fourgon, balais, pelles, compresseur d’air, nettoyeur haute-pression.

Modes opératoires

Avant toute intervention, il faut vérifier si les dépôts n’ont pas endommagé le système d’étanchéité, proscrire tout outil qui pourrait causer des blessures aux organes étanches du joint.

Balayage, soufflage à l’air.

Si après un premier soufflage, il reste des matériaux dans le joint, les détrempé par envoi d’eau sous pression puis procéder à un nouveau soufflage ou voire attendre l’hiver.

Délai d’intervention

Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée)

Garde-corps métallique

Objectif

Fonction : permet d’éviter la chute des piétons mais n’est pas un dispositif de retenue pour les véhicules. Les prescriptions techniques auxquelles doit répondre le garde-corps sont indiquées dans la norme XP P 98405. On peut également consulter le fascicule «Garde-corps» du SETRA.

Dégradations

Salissures diverses.

Interventions nécessaires

Nettoyage.

Moyens nécessaires

Cuve à eau, jet, pulvérisateur, grosses éponges.

L’utilisation d’un nettoyeur haute pression est à proscrire (risque de décapage de la peinture).
Modes opératoires
Nettoyer manuellement par pulvérisation d'eau et de savon et frotter avec l'éponge.
Éventuellement brosser (sans enlever la peinture).
Laver à l'eau (jet ou pulvérisateur).

Délai d'intervention
Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

<table>
<thead>
<tr>
<th>Sommier de piles et culées</th>
</tr>
</thead>
</table>
| **Attention** : la plupart des anciens ouvrages sont mal conçus et les conditions d'accès aux sommiers sont difficiles. Une reconnaissance préalable et une réflexion sur les moyens d'accès et les dispositifs de sécurité sont nécessaires.
Prendre les mesures nécessaires pour éviter l'apport de déblais depuis les talus ou les accotements.
Éviter d'endommager les appareils d'appui et les bossages en utilisant des moyens inadaptés.

Dégradations
- Encombrement par dépôt de terre ou de sable. Stagnation d'eau ;
- La stagnation des matériaux en provenance des joints de chaussée et l'imprégnation de ces matériaux par les eaux du joint sont de nature à endommager les appareils d'appui et à dégrader les matériaux constitutifs de la culée.

Conséquences :
Vieillissement prématuré de l'appareil d'appui et de la culée.

Interventions nécessaires
- Nettoyer périodiquement les sommiers de pile et de culée ;
- Déboucher les barbacanes et autres dispositifs permettant d'éviter des stagnations d'eau.

Moyens nécessaires
- Moyens d'accès ;
- Balayette ;
- Raclette ;
- Pelle ;
- Nettoyeur HP ;
- Cuve à eau.

Modes opératoires
- Mise en place des moyens d'accès ;
- Nettoyage manuel de la cunette et du dessus du sommier à l'aide d'une balayette et d'une raclette.
Utilisation du nettoyeur HP pour projeter les déchets aux extrémités du sommier, en limitant la pression à 8 Mpa (80 bars), puis enlèvement des matériaux.
- Déboucher les dispositifs d'évacuation.

Délai d'intervention
Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).
Fiche N°5.2 – Accès à l’ouvrage

Objectif

L’accès à toutes les parties des ouvrages doit être facile et entretenu pour pouvoir procéder aux visites de contrôles et de surveillance ainsi qu’à l’entretien.

Fonctions

Les dispositifs d’accès doivent être réalisés à la construction de l’ouvrage et il faut veiller à leur exécution et à leur entretien régulier. Ils doivent être créés ou remis en état s’ils ont été oubliés ou rendus inaccessibles par manque d’entretien.

Si l’accès doit s’effectuer à partir de la voie principale, il convient de prévoir :

- un stationnement devant permettre de gérer un véhicule en toute sécurité à proximité immédiate permettant de préparer du matériel d’intervention ;
- un accès piétons par les talus.

Il est rappelé que :

- les règles de sécurité routière s’appliquent aux agents de tout niveau qui visitent ou entretiennent les ouvrages ;
- les descentes d’eau préfabriquées ou maçonnées ne peuvent être considérées comme des accès à l’ouvrage.

Dégradation - cause

Les problèmes d’accès peuvent être liés à :

- un stationnement impossible ;
- une végétation gênant la visibilité ou l’accès à l’ouvrage ;
- un talus en mauvais état (rigoles, absence de descentes d’eau maçonnées, déformation des terrains, pente trop abrupte, etc.) ;
- absence d’accès praticable.

Interventions nécessaires

Stationnement impossible

- Créer une aire de stationnement pour un véhicule (surlargeur accotement, busage ponctuel d’un fossé, accès derrière des glissières,...) ;
- Maintenir cette aire en bon état.

Végétation

- Supprimer la végétation

Talus en mauvais état

- Mise en place de descente d’eau
- Apport de terre et reconstitution d’une surface uniforme
- Reprise par réalisation de plates-formes
Absence d'accès praticable.
- Créer un accès :
 - par des escaliers en béton, en bois, des traverses maintenues par des chevilles ou des bordurettes ;
 - par des réservations dans un perré ;
 - par un sentier.
- Maintenir cet accès en bon état.

Moyens

Stationnement impossible
- Emprises disponibles ;
- Matériel de terrassement ;
- Buses Béton Armé éventuellement.

Végétation
- Débroussailleuse ;
- Tronçonneuse ;
- Matériel de fauchage et de débroussaillage manuel.

Talus en mauvais état
- Pelles, pioches ;
- Descentes d'eau maçonnées ;
- Matériaux de remblai.

Absence d'accès praticable.
- Pelles, pioches, masse, scie, visserie éventuelle ;
- Vérifier les emprises ;
- Tout-venant pour remblaiement.

Mode opératoire

Stationnement impossible
Relève des techniques routières.

Végétation
Utilisation réglementaire des engins et de l'outillage.

Talus en mauvais état
Relève des techniques routières.

Absence d'accès praticable.
Escaliers en béton, en bois : traverses maintenues par des chevilles ou bordurettes ; éventuellement installer une main courante.

Enlever la mousse, changer les bois vermoulus et les mains courantes oxydées.

Délai d'intervention
Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée)
Fiche N°5.3 – Maîtrise de la végétation

Objectif

La végétation a des racines qui pénètrent dans les fissures et les joints.

En grossissant, elles provoquent des éclats de béton ou de pierres et la dislocation des parements.

Généralités

Sécurité

Dégager régulièrement l’ouvrage de la végétation pour :

- une bonne visibilité de l’ouvrage par les usagers de la route ;
- une bonne accessibilité aux « visiteurs de l’ouvrage » ;
- éviter toute dégradation sur la structure ;
- mettre à jour les désordres existants ;
- maintenir le débouché hydraulique.

Végétation sur tablier

Dégradations

La végétation peut :

- prendre naissance dans les endroits encombrés de salissures (terre, sable, boue...) ;
- créer des zones privilégiées de rétention d’humidité ;
- obstruer des évacuations d’eaux ;
- porter atteinte à l’étanchéité ;
- exercer une action chimique d'affaiblissement des liants et parfois des pierres ;
- fixer des dépôts qui perturbent l’écoulement de l’eau.

Interventions nécessaires

- arrachage de l’herbe ;
- balayage des caniveaux et trottoirs ;
- soufflage des joints de chaussée ;
- nettoyage des gargouilles.

Moyens nécessaires

Outils manuels, lance à eau sous pression éventuellement.

Modes opératoires

Le travail d’entretien doit être réalisé à l’aide de petits outils métalliques et de brosses en évitant d’utiliser des outils agressifs qui peuvent provoquer des désordres dans les maçonnéreries. Attention à l’emploi de lance à eau sous pression. Cet outil est à utiliser avec précaution.

Certaines herbes ont de longues racines. En les arrachant, on risque d’enlever une bonne partie des joints dans le cas de maçonnerie et ainsi, de disloquer la structure. Il est donc nécessaire de procéder par étapes successives en alternant arrachage et rejointoiement.

Toute élimination de végétation parasite sur les maçonnéreries devra être suivie le plus tôt possible d’une opération de rejointoiement.
Rappel Signalisation du chantier : elle doit être conforme aux règlements en vigueur.

Délai d’intervention Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Végétation sur murs, tympons et parties maçonnées

Dégradations La végétation peut :
- Créer des zones privilégiées de rétention d’humidité ;
- Exercer une action mécanique sur les remblais ;
- Compliquer la surveillance de l’ouvrage ;
- Exercer une action chimique d’affaiblissement des liants et parfois des pierres ;
- Contribuer à la dégradation des parties d’ouvrage où les racines font éclater les joints.

Interventions nécessaires Ne pas laisser la végétation s’installer ;
- Les ouvrages en maçonnerie présentent des parements irréguliers qui favorisent l’apparition et le développement de végétation.

Moyens nécessaires Outils manuels (raclette, brosse) avec manche télescopique éventuel ;
- Echelle, nacelle dans certains cas ;
- Echafaudage.

Modes opératoires Mettre en place la signalisation réglementaire ;
- Enlever et déraciner les plantes grimpantes.

Délai d’intervention Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Débroussaillage manuel des quart de cônes et talus végétalisés

Dégradations - Causes Installation d’une végétation parasite nuisant au bon développement de celle souhaitée.

Consequences :
Nécessité d’un entretien constant, alors que la réalisation de la tâche aux jeunes âges doit permettre de réduire les interventions ultérieures.

Interventions nécessaires Entretenir la végétation, avec la périodicité requise.

Moyens nécessaires Débroussailleuse, faux, croissant, fourche.

Modes opératoires Débroussaillage manuel à l’aide d’une débroussailleuse ou d’une faux sur 2 mètres minimum à partir de l’aplomb de l’ouvrage.

Attention, l’accès à ces zones est en général mal conçu.

Délai d’intervention Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).
Perrés

| **Dégradations - Causes** | Le développement de végétation sur les perrés maçonnés abîme les joints.
| | La prolifération de mousses et lichens par l'action de rétention de l'humidité dégrade le béton.
| **Conséquences :** | Un vieillissement accéléré de ces parties d'ouvrages qui contribuent à la stabilité des parties qu'elles protègent.
| **Interventions nécessaires** | Traiter préventivement, de façon prioritaire.
| | À défaut, procéder à l'élimination de la végétation et traiter pour éviter des repousses trop rapides.
| **Moyens nécessaires** | Balais, pelle, brouette, réserve d'eau, raclette ;
| | Nettoyeur H.P., citerne d'eau.
| **Modes opératoires** | Attention aux conditions d’accès à ces parties d’ouvrage, la plupart sont d’approche difficile.
| | *Pour supprimer la végétation, privilégier :*
| | - L’élimination à la raclette,
| | - Le nettoyage par eau sous pression (limitée à 8 Mpa (80bars) pour ne pas endommager les joints).
| | L’utilisation de produits chimiques est à proscrire en utilisation courante. Il faut réserver leur emploi à des spécialistes qualifiés dans ce domaine en imposant par ailleurs l’utilisation de produits respectant l’environnement et ceci plus particulièrement en site aquatique.
| **Délai d’intervention** | Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Sommiers de piles et de culées

| **Dégradations - Causes** | Le développement de végétation en sommier de pile et/ou de culée est de nature à dégrader les appareils d'appui et le matériau constitutif de la pile et/ou de la culée.
| **Conséquences :** | Risque de mauvais fonctionnement de l'appareil d'appui, vieillissement prématuré de l'appareil d'appui, dégradation de l'appui dû au développement de la végétation.
| **Interventions nécessaires** | Nettoyer les sommiers de pile et de culée pour y enlever toute végétation naissante, tout dépôt de matériau.
| | Procéder, si nécessaire, au débouchage des dispositifs d'évacuation des eaux.
| | *(voir fiche 6.5 chapitre « Débouchage des collectes et évacuation des eaux pluviales »)*
Moyens nécessaires
- Balayette, raclette, nettoyeur H.P.
Si impossibilité d'accès par les moyens traditionnels tels qu'échelle, échafaudage léger, prévoir une nacelle négative.

Modes opératoires
- Nettoyage manuel à l'aide d'une balayette et d'une raclette.
- Utilisation du nettoyeur H.P. ;
Dans le cas de l'utilisation du nettoyeur H.P., limiter la pression à 8 Mpa (80 bars).

Délai d'intervention
Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Les abords

Dégradations - Causes
La végétation peut :
- créer des rideaux d'arbres, conservant en permanence l'ouvrage dans l'ombre et entretenant ainsi l'humidité ;
- réduire les caractéristiques hydrauliques en site aquatique ;
- créer des obstacles favorisant le stockage des boues ;
- compliquer l'accès à l'ouvrage et rendre difficile sa surveillance continue ;
- de longues racines peuvent déstabiliser un ouvrage malgré son éloignement.

Interventions nécessaires
Fauchage mécanique régulier lié à l'entretien routier :
- dégagements des gabarits hydrauliques.
- dégagement d'une zone d'approche autour de l'ouvrage.

Moyens nécessaires
Engins mécaniques et outils manuels.

Modes opératoires
La coupe d'arbres de gros diamètres nécessite l'intervention d'un personnel qualifié ayant reçu une formation adéquate, qui pourra intervenir afin d'éviter tout incident.

Délai d'intervention
Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).
Fiche N°5.4 – Evacuation des eaux

Objectif

Toute opération ayant pour but de maintenir un ouvrage dans son état de service relève de l’entretien.

L’entretien a essentiellement un caractère préventif. Tous les ouvrages d’art doivent être entretenus.

L’entretien courant est celui qui, demandant peu de moyens et peu de technicité, doit être réalisé de façon régulière en étroite liaison avec la surveillance continue.

Cette fiche est relative à l’entretien courant.

Nettoyage des avaloirs grilles et gargouilles

<table>
<thead>
<tr>
<th>Dégradations</th>
<th>Obturation des dispositifs d'évacuation des eaux.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conséquences</td>
<td>Stagnation de l'eau sur chaussée.</td>
</tr>
<tr>
<td></td>
<td>Pousse de la végétation, infiltrations d'eau dans l'ouvrage ou le tablier.</td>
</tr>
</tbody>
</table>

Interventions nécessaires

Nettoyer périodiquement.

Moyens nécessaires

Crochet, balais, raclette, pelle, brouette

Modes opératoires

- Nettoyage superficiel, puis dépose des grilles et tampons pour nettoyage manuel des ouvrages ;
- Hydrocureur (furet hydraulique).

En cas de difficultés : utilisation d’un hydrocureur (furet hydraulique). Dans ce cas, travailler de l’aval vers l’amont.

Délai d’intervention

Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Débouchage des collectes et évacuation des eaux pluviales

<table>
<thead>
<tr>
<th>Dégradations</th>
<th>Le bouchage de ces dispositifs, situés en tête de sommier de culée, plus rarement de pile, peut conduire :</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>à la stagnation des eaux sur le béton ou les maçonnceries avec éventuellement détérioration des appareils d’appui,</td>
</tr>
<tr>
<td></td>
<td>au débordement des eaux, au-delà du dispositif.</td>
</tr>
<tr>
<td>Conséquences</td>
<td>Vieillissement prématuré des structures et équipements, ravinement des perrés.</td>
</tr>
</tbody>
</table>

Interventions nécessaires

Vérifier le bon fonctionnement du système d'évacuation, par exemple lors du contrôle annuel, en déversant de l'eau et en vérifiant que son évacuation s'effectue correctement.

Sinon, procéder au débouchage, puis à la vérification évoquée ci-dessus.
Moyens nécessaires
- fer à béton, raclette, cannes de curage, balais ;
- nettoyeur Haute Pression et cuve à eau ;
- hydrocureur (furet hydraulique).

Modes opératoires
- Passage de fers à béton ou cannes de curage de buse.
- En cas d'échec, utilisation nettoyeur Haute Pression.
- En cas d'échec, utilisation d'un hydrocureur par le bas.
- Attention aux conditions d'accès aux sommiers, la plupart des anciens ouvrages sont mal conçus pour accéder à ces zones.
- Une reconnaissance préalable et une réflexion sur les moyens d'accès et les dispositifs de sécurité sont nécessaires.

Délai d'intervention
- Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Nettoyage des corniches caniveaux

Dégradations
La stagnation de matières solides gêne ou empêche l'écoulement des eaux.

Conséquences :
La corniche caniveau ne joue plus son rôle, l'eau s'écoule sur la chaussée ou sur l'ouvrage. De plus, les sédiments concentrent les matières en suspension, en particulier les métaux lourds.

Interventions nécessaires
Nettoyer périodiquement le dispositif, avant toute accumulation significative.

La périodicité est adaptée à l'ouvrage et dépend des salissures apportées par la chaussée, du bassin versant, du dimensionnement de la corniche, de la pente longitudinale de l'ouvrage.

Moyens nécessaires
- Nettoyeur HP, cuve à eau ;
- Pelle, brouette, camion.

Modes opératoires
- Nettoyage par haute pression ;
- Les dépôts doivent être évacués dans une décharge. Ils ne doivent en aucun cas être jetés à la rivière (sédiments chargés en métaux lourds).
- Des dispositions particulières doivent être mises en œuvre pour assurer la sécurité des agents : ligne de vie et harnais grilles faisant garde-corps, etc.

Délai d'intervention
- Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Curage de saignées aux abords des ouvrages

Dégradations
Colmatage des saignées, par défaut d'entretien.

Conséquences :
Les eaux de ruissellement, de part et d'autre de l'ouvrage se concentrent sur l'ouvrage et s'infiltrait éventuellement dans le joint de dilatation.
Interventions nécessaires
Entretenir ces dispositifs simples, périodiquement, pour éviter leur colmatage et la poussée d'une végétation nuisible à leur bon fonctionnement.

Moyens nécessaires
Pioche, pelle, balais.

Modes opératoires
Curage et nettoyage des saignées aux extrémités de l'ouvrage.

Délai d'intervention
Cet entretien courant à la charge du maître d'ouvrage doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Débouchage des barbacanes sur ouvrages de souènement

Dégâts
Dépôts de matériaux solides dans les orifices, voire obstruction volontaire.

Conséquences:
Accumulation d'eau derrière le mur, augmentation des poussées, à terme ruine du mur.

Interventions nécessaires
Nettoyer périodiquement ces orifices en s'assurant de leur bon fonctionnement.

Moyens nécessaires
Tige métallique, balais, pelle.

Modes opératoires
- Nettoyage à l'aide d'une tige métallique, en prenant soin de ne pas abîmer ou percer l'éventuelle protection filtrante (géotextile ou autre);
- En cas d'échec, utilisation d'un nettoyeur haute pression en limitant la pression à 8 MPa (80 bars);
- Recréer des barbacanes si nécessaire.

Délai d'intervention
Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).
Fiche N°5.5 – Chaussées d’ouvrage

Objectif

Toute opération ayant pour but de maintenir un ouvrage dans son état de service relève de l’entretien.

L’entretien a essentiellement un caractère préventif. Tous les ouvrages d’art doivent être entretenus.

L’entretien courant est celui qui, demandant peu de moyens et peu de technicité, doit être réalisé de façon régulière en étroite liaison avec la surveillance continue (cf. fiche n°6.1).

Cette fiche est relative à l’entretien courant.

Pont en maçonnerie

Dégradations - Causes

Nids de poule :

- mauvaise qualité de la chaussée ;
- pollution par remontée d’argile du matériau de remplissage des voûtes ;
- forte perméabilité de la couche de roulement et dégradation ;
- défaut de drainage ;
- gel.

Fissure :

- fatigue de la chaussée ;
- vieillissement ;
- retrait de l’assise traitée ;
- joint de reprise du tapis.

Flaque :

- peut révéler un grave défaut de la structure ;
- provient du tassement des matériaux avec fuite éventuelle au travers de la structure.

Affaissement :

- provient du mouvement d’un appui.

Interventions nécessaires

Nids de poule :

- nécessité d’intervention d’urgence, bouchage par enrobés à froid, grave émulsion, grave bitume ou enrobés à chaud ;
- sur chaussée peu circulée, emploi possible de graves naturelles GNT avec scellement à l’émulsion de bitume et gravillonnage obligatoire.

Fissure :

- si fissures fines (< 2 mm d'ouverture), suivre leur évolution ;
- si fissures larges (> 2 mm), imperméabilisation de la surface.

Les pontages devront être réalisés par une entreprise spécialisée ainsi que la reprise générale éventuelle de la chaussée.
Flache :
- inspecter l'état de la route, des tympans, si anomalies prévoir une inspection de l'ouvrage (VES au minimum) ;
- reprofilage en grave émulsion ou béton bitumineux.

Affaissement :
- inspecter immédiatement l'ouvrage ;
- nécessite grosse réparation.

Moyens nécessaires

Nids de poule :
- personnel nécessaire ;
- Camion ;
- Compresseur à bêche ;
- Dame vibrante ou manuelle ;
- Point à temps ;
- Matériaux ;
- Signalisation de chantier ;
- Matériel pour alternat de circulation éventuel.

Fissure :
- Personnel nécessaire ;
- Camion ;
- Point à temps ;
- Compacteur (pas de cylindre vibrant lourd) ;
- Matériaux ;
- Signalisation de chantier ;
- Éventuellement matériel pour alternat de circulation.

Flache :
- Camion ;
- Point à temps ;
- Compresseur à bêche pneumatique ;
- Compacteur (pas de cylindre vibrant lourd) ;
- Matériaux ;
- Signalisation de chantier ;
- Éventuellement matériel pour alternat de circulation.

Modes opératoires

Avant d'intervenir, s'informer sur la position de l'étanchéité notamment si l'ouvrage a fait l'objet de réparations (consulter le dossier d'ouvrage) avec mise en place d'une étanchéité générale haute.

Nids de poule :
- Découpage des bords du trou pour éliminer les parties dégradées et obtenir des bords verticaux ;
- Évacuer toute trace d'eau du trou et purger le fond du trou ;
- Mettre une couche d'accrochage d'émulsion (0,8 Kg/m²) ;
- Remplir le trou du matériau choisi ;
- Compacter (pas d'engin vibrant lourd) ;
Gravillonner sur enrobé à froid ;
Scellement de la réparation avec émulsion de bitume (1,5 Kg/m²) et gravillons 4/6.

Fissures :
Si fissures >2 mm mais limitées :
- Emplois partiels 1,5 Kg/m² d’émulsion à 65 % avec gravillons 2/4 ou 4/6 ;
- Éviter le surdosage en liant ;
- Balayage des gravillons en excès.
Éviter la circulation immédiate sur traitement.

Flache :
- Reprofilage localisé ;
- Délimiter les zones à traiter éventuellement avec la bêche pneumatique ;
- Couche d’accrochage ;
- Épandre le matériau (grave émulsion, enrobés à froid, micro béton bitumineux à chaud) ;
- Régler suivant les pentes ;
- Compacter en évitant le cylindre vibrant lourd ;
- Vérifier les pentes ;
- Imperméabiliser la surface et traiter les bords.

Rappel
On peut suivre utilement les indications fournies par le guide pratique pour l'entretien courant des chaussées, édité par le SETRA - Édition 1996.

Délai d’intervention
Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Pont à tablier
La chaussée d’un pont à tablier est constituée d’un revêtement en béton bitumineux mince, posé sur la chape d’étanchéité. Celle-ci garantit le bon état de l’ouvrage. Il est impératif d’éviter la moindre détérioration de la chape ; si une atteinte y a été portée, elle doit être confirmée par l’inspection d’un spécialiste en Ouvrages d’Art pour faire procéder à la réparation par une entreprise spécialisée.

Dégradations - Causer

- **Nids de poule** :
 - Arrachement localisé du revêtement.

- **Pelade localisée** :
 - Petits arrachements localisés ou généralisés du matériau de revêtement.
Interventions nécessaires

Nids de poule

Nécessité d'intervention d'urgence, bouchage par enrobés à froid, définitif par béton bitumineux à chaud.

Pelade localisée

Imperméabilisation par emplois partiels ou enduit général. Peut nécessiter l'exécution d'un tapis mince ou ultra-mince.

Relève alors de l'entretien spécialisé.

Moyens nécessaires

Nids de poule

- Personnel nécessaire ;
- Camion ;
- Compresseur à béche pneumatique ;
- Cylindre vibrant léger ;
- Point à temps ;
- Matériaux chauds ;
- Signalisation de chantier ;
- Matériel pour alternat de circulation éventuel.

Pelade localisée

- Personnel nécessaire ;
- Camion ;
- Point à temps ;
- Signalisation de chantier ;
- Éventuellement matériel pour alternat de circulation.

Modes opératoires

Nids de poule

- Découpage des bords du trou pour éliminer les parties dégradées et obtenir des bords verticaux ;
- Évacuer toute trace d'eau du trou et purger le fond du trou ;
- Mettre une couche d'accrochage d'émulsion (0,8 Kg/m²) ;
- Remplir le trou du matériau choisi (béton bitumineux à chaud sauf pour reprise provisoire) ;
- Compacter (pas d'engin vibrant lourd).

Pelade localisée

Procéder par emplois partiels ou généralisés suivant les techniques routières adaptées (enduit ou tapis).

Veillez à ce qu'il n'y ait pas d'excès d'émulsion, à retirer les gravillons en excès par balayage général. S'assurer que les évacuations d'eau sont en état normal de fonctionnement.

Délai d'intervention

Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).
Fiche N°5.6 – Equipements

Objectif

Toute opération ayant pour but de maintenir un ouvrage dans son état de service relève de l’entretien.

L’entretien a essentiellement un caractère préventif. Tous les ouvrages d’art doivent être entretenus.

L’entretien courant est celui qui, demandant peu de moyens et peu de technicité, doit être réalisé de façon régulière en étroite liaison avec la surveillance continue (cf fiche n°6.1).

Cette fiche est relative à l’entretien courant.

Trottoirs, bordures, réseaux, concessionnaires

Objectif

Fonction : les trottoirs permettent la circulation des piétons, contiennent éventuellement des réseaux ; les bordures servent de fil d’eau et évitent que les véhicules ne franchissent le trottoir.

Constitution : trottoirs pleins (béton maigre, sable...), revêtus (béton, enrobés, asphalte) ou creux, couverts par des dalles.

ATTENTION : un défaut d’alignement en plan ou en élévation peut traduire un comportement anormal de la structure.

Dégradations - Causes

Bordures déplacées :

Chocs de véhicules, infiltrations d’eau, flexion du tablier, problème de dilatation :

absence de joints secs entre éléments, chocs de véhicules, absence de jeu au droit du joint du tablier...

Affaissement, nids de poule :

Dans le revêtement des trottoirs

Dallettes cassées :

Circulation de véhicules sur le trottoir, tassement des remblais, mouvements de l'ouvrage, vandalisme.

Désordres sur les réseaux :

Fuites, corrosion des supports, dégradations du calfeutrage (cas des conduites d’eau). Ces réseaux appartiennent à des concessionnaires (France Telecom, GDF, EDF, syndicats des eaux ...)

Interventions nécessaires

Bordures déplacées :
- mise en place d'une signalisation.
- intervention d'entretien spécialisé à prévoir après analyse des causes, création d'un joint libre toutes les 3 ou 4 bordures.

Affaissement, nids de poule :
- réparation pour assurer la sécurité des piétons.

Dallettes cassées :
- mise en place d'une signalisation pour les piétons et autres usagers.
- La réparation doit être précédée d'une analyse des causes.

Désordres sur les réseaux :
- Alerter le concessionnaire dès l'apparition du désordre pour qu'il assure l'entretien ou la remise en conformité de son réseau.

Moyens nécessaires

Bordures déplacées :
- Alternat de circulation éventuel, fourgon, baudriers, gants, brouette, pelle, béton pour pose et calage des bordures.

Affaissement, nids de poule :
- Fourgon, baudriers, pelles, gants, matériaux enrobés, éventuellement bêche pneumatique.

Dallettes cassées :
- Alternat de circulation éventuel, fourgon, baudriers, gants.

Modes opératoires

Bordures déplacées :
- mise en place de la signalisation de restriction de circulation ;
- enlèvement de la bordure gênante ;
- balisage ;
- dépose des bordures puis pose avec joints libres.

Affaissement, nids de poule :
- Boucher et reprofiler les trottoirs après avoir déterminé la cause de la dégradation pour effectuer la réparation définitive ultérieure.

Dallettes cassées :
- mise en place d'une signalisation de la zone dangereuse pour les piétons et autres usagers ;
- remplissage de sable, mise en place de planches ou de matériaux enrobés à froid en attendant le remplacement.

Désordres sur les réseaux :
- Intervention auprès du concessionnaire.

Délai d’intervention

Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).
Corniches

Objectif

Fonction : permettent la fixation des garde-corps, elles jouent un rôle esthétique ainsi que pour l'évacuation des eaux dans le cas des corniches-caniveaux. Elles doivent permettre les dilatations du tablier pour les joints de chaussée et des trottoirs.

Constitution : béton, acier, aluminium. En général, elles sont préfabriquées.

Dégradations - Causes

Salissures diverses :
- Sur corniches dues aux projections par les véhicules, à la pluie, aux ruissellements.
- Détérioration des joints entre éléments.

Éclats, taches de rouille :
- Suite au gel et à l'insuffisance d'enrobage des aciers pour les corniches en béton armé.

Traces de chocs :
- Heurts par des véhicules hors gabarit en hauteur occasionnant cassures, épaufrure, etc. ;
- Déplacement ;
- Détérioration de la fixation à la structure par chocs ou corrosion.

Interventions nécessaires

Salissures diverses :
- Nettoyage (inesthétique) ;
- Colmatage du joint entre éléments (opération délicate à réaliser).

Éclats, taches de rouille :
- Enlever les éclats pour qu'ils ne tombent pas sur la voie franchie ;
- Une visite est nécessaire chaque printemps ;
- Passivation et peintures des aciers apparents.

Traces de chocs ou déplacement :
Si les désordres sont importants, mise en place d'une signalisation de restriction de circulation sur et/ou sous l'ouvrage.

Réparation selon l'importance des désordres :
- Peu importants : réparations de surface, enlèvement des éclats, passivation des aciers apparents, ragréage de surface ;
- Importants : analyse des causes par un spécialiste en ouvrages d’art, remplacement de l’élément.

Vérification et renforcement des fixations des autres éléments.
Moyens nécessaires

Salissures diverses :
- Alternat de circulation éventuel, agents, fourgon, baudriers, gants, cirés, grosses éponges, brosses pour les impuretés ;
- Jet, pulvérisateur ou nettoyeur moyenne pression avec dispositif d'aspiration, cuve à eau.

Éclats, taches de rouille :
- Marteaux, balais, pelles, matériel de signalisation.
- Passivant pour le traitement des aciers (attention : le produit utilisé devra être compatible avec le produit de réparation du béton).

Modes opératoires

Salissures diverses :
- Pulvérisation eau et savon ou eau et détergent à moyenne pression (limité à 0.5 Mpa soit 5 bars) pour ne pas dégrader les parements ;
- Rinçage à l'eau.

L'emploi du nettoyeur moyenne pression sera interdit lorsqu'une voie passe sous l'ouvrage (la méthode pulvérisation sera alors retenue), l'emploi de détergents sera proscrit au-dessus d'un milieu aquatique.

Éclats, taches de rouille :
- Faire tomber les éclats décollés ;
- Appliquer un produit passivant pour aciers permettant d'éviter une corrosion plus importante (opération relevant de l'entretien spécialisé).

Délai d'intervention

Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Garde-corps métallique

Objectif

Fonction : permet d'éviter la chute des piétons mais n'est pas un dispositif de retenue pour les véhicules. Les prescriptions techniques auxquelles doit répondre le garde-corps sont indiquées dans la norme XP P 98405. On peut également consulter le fascicule «Garde-corps» du SETRA.

Dégradations

Fixation défectueuse :
- Montants descellés par rupture du mortier de scellement.

Attaques de corrosion localisées :
- En pied de montants et lisse inférieure par absence de ventilation ;
- Suite à des chocs ou à une déficience ponctuelle du dispositif anticorrosion.

Problème de dilatation :
- Par absence de dispositif au droit des joints de chaussée ;
- Par blocage par fixation de glissières.

Déformation linéaire suite à accident.

Déformation linéaire d'ensemble.
Interventions nécessaires

Fixation défectueuse :
- Mesure de sécurité immédiate par mise en place d'une signalisation de la zone dangereuse pour les piétons ;
- Intervention d'entretien spécialisé pour réparation.

Attaques de corrosion localisées :
- Percement de trous de 10 mm de diamètre maximum à réaliser en partie inférieure des montants et de la lisse où stagne l'eau circulant dans les éléments ;
- Reprises localisées de peinture (entretien spécialisé).

Problème de dilatation :
1. mettre un élément avec manchon (entretien spécialisé),
2. désolidariser la glissière du garde-corps et mettre un manchon sur glissière.

Déformation linéaire suite à accident :
Neutraliser la partie de trottoir au droit du garde-corps par des barrières ou rétablir sa continuité provisoirement.
Le redressage sur place même s'il semble satisfaisant ne suffit pas ; les éléments tordus ayant été fragilisés, il faut changer l'élément.

Déformation linéaire d'ensemble :
Ceci peut indiquer un défaut de la structure, un décollement de bandeau, un affaissement ou un déversement.
Pour analyser les causes, faire réaliser un diagnostic par un spécialiste ouvrages d'art.

Moyens nécessaires

Corrosion localisée :
Personnel compétent et suffisamment informé.

Matériels nécessaires :
- Brosse métallique pour le décapage ;
- Brosse pour l'application de la peinture ;
- Compresseur pour le dépoussiérage ;
- Peinture homologuée type A (se reporter au fascicule 56 CCTG/ACQPA) ;
- Perceuse électrique portative pour percement.

Modes opératoires

Corrosion localisée :
- Décapage par brossage des parties oxydées à mener de pair avec phosphatation ;
- Mise en peinture si la température est supérieure à 5°C ;
- Application à la brosse ;
- Utilisation de produits prêts à l'emploi sans diluant et respect des consignes d'utilisation ;
- Emploi d'un primaire adapté à un fond résiduel de rouille et la présence de vieille peinture ;
- Traiter par éléments entiers ou section avec arrêts francs.
Délai d'intervention
Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).

Dispositif de retenue

Objectif
Fonction : ces barrières ou glissières ont pour but de retenir les véhicules et leur éviter la chute sur la voie franchie. Elles sont fixées à la structure pour pouvoir résister aux chocs. Le dossier pilote GC du SETRA décrit et donne toutes les informations sur tous les types d'équipement que l'on peut rencontrer.

Dégradations
Eléments tordus :
Les désordres consécutifs à des heurts de véhicules sont les plus fréquents.

Visserie :
- desserrage ou absence d'écrous ;
- corrosion.

Interventions nécessaires
Eléments tordus :
Mesure de sécurité immédiate (signalisation, protection provisoire). Vérification de l'état de la structure du tablier.

Changement de l'élément endommagé.

Visserie :
Resserrer les écrous ou remplacer les écrous manquants et les contre écrous.

Remplacer les pièces corrodées (entretien spécialisé).

Dans tous les cas, s'assurer que les tiges de fixation sont bien scellées et qu'il n'y a pas éclatement du béton de la structure.

Moyens nécessaires
- matériel de signalisation ;
- matériel pour boulonnage et déboulonnage, pour percement ;
- matériel de remplacement.

Modes opératoires
- mise en place de la signalisation de sécurité ;
- mise en place, si possible, d'éléments provisoires ;
- démonter l'élément détérioré et le remplacer par un élément neuf ;
- changer la visserie manquante ou détériorée ;
- serrer suffisamment sans écraser l'élément.

Délai d'intervention
Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).
Joints de chaussées

Objectif

Fonction : permet les mouvements relatifs (dilatation) entre le tablier et ses appuis ou deux éléments de structure, assure la continuité de la surface de roulement.

Constitution : joints de chaussée à composants métalliques, joints à revêtement amélioré.

ATTENTION : les décalages dans un plan vertical ou les décalages transversaux des joints de dilatation peuvent être le signe de désordres importants de fonctionnement de la structure. Les ouvertures anormales (ouverture totale ou butée) peuvent également être un signe de désordre grave. Pour tous ces examens, il conviendra toujours de comparer une extrémité du tablier à l'autre.

Toute butée du joint dans le sens longitudinal ou transversal, la rupture d’éléments (que la butée soit due à un objet d’apport extérieur, soit du fait du fonctionnement de l’ouvrage), ou tout autre défaut visuel (usure, déformation, choc, déchirure, décollement, fissure, arrachement du remplissage), ou sonore (battement, claquement au passage des véhicules) constatés sont préjudiciables à l’intégrité du joint.

Avant toute intervention autre qu’une intervention de sécurité, il faut vérifier si le joint ne bénéficie pas d’une garantie, auquel cas il conviendra de faire revenir l’entreprise qui l’avait fourni et posé.

Dégradations

Salissures diverses incrustées :

Voir fiche n°6.3 «Nettoyage général».

Joints de chaussée mécaniques :

Détérioration due au passage des véhicules.

Écrous ou vis desserrés, élément manquant, tassement du mortier de calage, éléments bloqués.

Joint à profilé élastomère :

Sortie du profilé élastomère de son logement.

Interventions nécessaires

Joints de chaussée mécaniques :

Prendre des mesures de sécurité immédiate avec neutralisation d’une voie.

Une intervention est nécessaire au moins pour éviter le détachement d’un élément du joint en limitant le serrage au strict minimum.

Prévenir une entreprise spécialisée.

Joint à profilé élastomère :

Prendre des mesures de sécurité immédiate avec neutralisation d’une voie.

Remise en place du profilé. S’il est détérioré ou si les profilés présentent un défaut, faire appel à un spécialiste ouvrages d’art pour examiner la situation en vue du changement du joint.

Si possible, remplissage provisoire du joint par matériaux enrobés à froid, résine, etc.
Moyens nécessaires

Joints de chaussée mécaniques ;
Alternat de circulation éventuel, agents, fourgon, clé dynamométrique éventuelle.

Joint à profilé élastomère :
Alternat de circulation éventuel, agents, fourgon.

Modes opératoires

Mesure de sécurité immédiate : signalisation de restriction de circulation.

Joints de chaussée mécaniques :
Cas où des écrous ou vis sont desserrés, des éléments manquants.
Vérification visuelle détaillée des ancrages et des fixations, sondages sonores à l'aide d'un marteau pour déterminer si les dégâts sont généralisés (son creux), vérification du serrage.

Joint à profilé élastomère :
En cas de remise en place, s'assurer de la bonne tenue du profilé

Délai d'intervention

Cet entretien courant doit être exécuté systématiquement pour tous les ouvrages en fonction des observations recueillies au cours de la surveillance (continue ou organisée).
Fiche N°5.7 - Inspection et surveillance des ouvrages d'art (Passages Inférieurs, Passages Supérieurs, murs de soutènement)

Objectifs
Le suivi régulier des ouvrages d'art s’inscrit dans la politique de gestion de son patrimoine.
L’objectif est de garantir la fonctionnalité de l’ensemble des ouvrages d’art, et d’éviter tout risque de désordre majeur pouvant aboutir à des réfections lourdes de ces ouvrages d’art ou à des effondrements importants au droit des ouvrages hydrauliques >2m pouvant dans les cas extrêmes aller jusqu’au départ du remblai, ou de coupures liées à des chutes pour les PS.

Références
- Instruction Technique pour la Surveillance et l’Entretien des Ouvrages d’Art
- Guide Technique VSC- méthode d’aide à la gestion de patrimoine – LCPC – Août 2006,
- Nouvelle méthode de gestion des ouvrages d’art pour les départements – Setra – Revue ouvrages d’art n° 46 – Décembre 2000

Méthode

Surveillance continue
Compétence requises :
La qualification requise pour l’un au moins des deux agents est de niveau chef d’équipe.

Moyens de visites :
Elle ne nécessite pas de moyens d’accès particuliers.

Visite bi-annuelle
Compétences requises :
La qualification requise pour l’un au moins des deux agents est de niveau chef d’équipe.

Moyens de visites :
A l’exception des procès-verbaux de visite et éventuellement des catalogues de désordres par type d’ouvrage, aucun matériel particulier n’est requis pour effectuer les visites qui s’échelonnent sur tout au plus une demi-journée.
Elle nécessite des moyens d’accès limités, éventuellement une échelle.
Inspection détaillée

Compétences requises :

L’équipe d’inspection sera composé comme suit :

- L’équipe de constatations doit être dirigée par un agent qualifié avec au moins 5 ans d’expérience d’inspection détaillée ;
- L’ensemble de l’inspection détaillée doit être dirigée et exploitée par un agent qualifié au niveau ingénieur ayant obligatoirement reçu une formation spécialisée en ouvrage d’art et en pathologie.

Prestation externalisée (marché à bon de commande)

Moyens de visites :

Cette action de surveillance nécessite l’intervention de personnel spécial et de matériel particulier (Moyens d’accès par exemple)

Visites spécifiques

Compétence requises :

La réalisation se fera de préférence par un prestataire spécialisé et au moyen de marchés de prestations intellectuelles.

Moyens de visites :

Bon usage

Surveillance continue

Elle consiste à faire un examen visuel global et rapide des ouvrages et notamment après tout événement exceptionnel susceptible de provoquer une dégradation imprévue (accident, orage, glissement de terrain, séisme, vent violent, etc...)

La surveillance continue doit permettre d’alerter le gestionnaire en cas d’inquiétudes relatives à la sécurité ou d’événement climatique important. Elle doit s’effectuer avec le moins de formalités possibles.

Si cette surveillance détecte un « événement » (accident, événement climatique,...) ayant provoqué des dégradations sur un ouvrage, l’exploitant en fait part au pôle ouvrages d’art.

Par suite, cela peut donner lieu à une expertise et/ou une inspection détaillée.
Visite bi-annuelle
Cette visite est voulue simple.
Elle ne nécessite a priori pas de moyens d'accès spécifiques.
Elle est obligatoire.
Une visite périodique est une visite visuelle rapide (de l'ordre d'1h), une fois sur l'ouvrage.
Ces visites sont réalisées avec une périodicité de 1 an.
Elle a pour objectif :
- de vérifier le bon état et la stabilité de l'ouvrage d'art ;
- d'effectuer les actions de surveillance recommandées dans le rapport d'inspection détaillée ;
- de mettre à jour ce rapport : travaux, évolutions, événements particuliers, etc. ;
- de vérifier la bonne tenue des travaux de réparation récents ;
- de vérifier si l'entretien courant a été effectué, sinon de le planifier ;
- d'alerter si une dégradation inhabituelle est observée ;
- de compléter le procès-verbal et de le signer.
Le personnel chargé de la visite doit commencer sa visite par une vérification ou une mise à jour (voire un complément) des plans du site en fonction des événements intervenus depuis la dernière visite ou inspection (notamment : travaux,...).
L'examen est consigné sur un PV de visite.

Inspection détaillée
L'inspection détaillée doit être réalisée par du personnel compétent dans le domaine du suivi des ouvrages d'art.
Leur périodicité normale est de 6 ans. Elle peut être ramenée à 3 ans pour les ouvrages sensibles ou malades ou portée à 9 ans pour les ouvrages les plus robustes. Cependant, tous les ouvrages devraient bénéficier d'une inspection détaillée sur une période de 10 ans au maximum.
L'objectif est de vérifier :
- que l'état de l'ouvrage ne s'est pas anormalement dégradé ;
- que les dispositifs assurant la sécurité des usagers sont dans un état acceptable ;
- qu'il n'y a pas de désordres apparents menaçant la sécurité.
Le but de ces inspections est de localiser, de décrire et de quantifier précisément la liste des dégradations (ou des phénomènes susceptibles de devenir des dégradations, ex. : fissures sur béton) visibles sur l'ouvrage.
L'inspection détaillée est réalisée en utilisant des moyens d'accès spéciaux (échelle, nacelle ou passerelle à déport négatif ou positif, embarcation, cordistes,...) ou des systèmes de visualisation à distance (jumelles longue vue, moyens vidéo).
Ces inspections détaillées sont réalisées par un prestataire externe.

Visites spécifiques
Pour les visites subaquatiques, la fréquence est adaptée en fonction de la sensibilité de l'ouvrage. Elle peut être différente de celle de l'inspection détaillée « terrestre ».
L’objectif de ces visites spécifiques est le même que pour les inspections détaillées.
Délai d’intervention

Les visites bi-annuelles et les inspections détaillées sont des inspections programmées environ un an auparavant sur les plannings d’intervention.

Pour ces 3 types d’inspection, un rapport de visite ou PV devra être rendu au mandataire dans un délai d’un mois suivant l’inspection.

La surveillance continue, comme son nom l’indique est fait en continu par les patrouilleurs ou les agents empruntant le réseau.

Les visites spécifiques peuvent quant à elles être programmées mais elles sont plutôt déclenchées suite à un point sensible ou douteux mettant par exemple en péril la sécurité des usagers.

** Sécurité **

Généralité
La sécurité d’usage des ouvrages relève de ma responsabilité civile ou pénale du maître d’ouvrage.

Pour les usagers
Lorsqu’à l’issue d’une inspection, un ou plusieurs éléments présentent des risques pour la sécurité immédiate des usages (altération des dispositifs de retenue, décalage entre éléments des joins de chaussée, dégradations importantes de la chaussée, chutes de morceaux de béton, etc.), les services sont tenus d’en informer toutes les instances concernées par cet ouvrages (maire, président du groupement de communes,...) dans les meilleurs délais.

Dans la méthodologie IQOA, ils se traduisent par la mention « S » et doivent faire l’objet d’un traitement spécifique en réponse à cette urgence.

Lorsqu’il est constaté à l’issue d’une visite qu’un ouvrage est dans un état défectueux ou risque de l’être à court terme – c’est-à-dire que sa notation IQOA est « 2E » , « 3 » et « 3U » - les services doivent en informer les instances concernées dans les meilleurs délais et lui proposer d’engager un diagnostic technique de l’ouvrage. Des mesures de sécurité immédiate peuvent s’avérer nécessaires. Elles sont alors proposées par les services aux instances concernées.

Seules les restrictions d’utilisation (de circulation notamment) et certaines mesures de protection des tiers peuvent être considérées comme des mesures de sécurité immédiate car leur mise en application peut se faire très rapidement.

Les confortements provisoires et étaiements sont considérés comme des mesure de sauvegarde ; ils ne peuvent être utilisés que lorsqu’il n’y a pas d’urgence immédiate ou lorsqu’ils sont accompagnés de mesure d’application plus rapide, ces dernières pouvant être instaurées à titre provisoire jusqu’à ce que les confortements ou étaiement aient eu le temps d’être installés.
Des inspecteurs

Les visites et inspections doivent être menées avec les mêmes règles de sécurité de toutes les interventions sur route en service : Port des EPI, signalisation, éventuellement neutralisation de voies, etc…

De plus, pour des raisons de sécurité évidentes, la présence de deux agents sur le site s’avère indispensable.

Les visites subaquatiques doivent être menées avec les mêmes règles de sécurité que celles qui encadrent les plongées à savoir le nombre d’intervenants, l’usage de protections individuelles, l’information des services de secours, l’information des services pouvant avoir une influence sur le régime des eaux (gestionnaires de barrage et/ou des vannages, aval et amont).
Fiche N°5.8 – Défauts mineurs structurels

Objectif

Toute opération ayant pour but de maintenir un ouvrage dans son état de service relève de l’entretien.

L’entretien a essentiellement un caractère préventif. Tous les ouvrages d’art doivent être entretenus.

L’entretien courant est celui qui, demandant peu de moyens et peu de technicité, doit être réalisé de façon régulière en étroite liaison avec la surveillance continue (cf fiche n°6.1).

Cette fiche est relative à l’entretien courant des défauts mineurs.

- Clous ou boulons mal enfoncés ;
- Plaques de trottoir ou planches de tablier endommagées ;
- Acier rouillé, peinture écaillée ;
- Bois non traité Joints de maçonnerie défectueux.

Causes et évolution

Les causes principales sont :

- Jeu sous l’action de circulation, rouille ou maflaçon ;
- Action de la circulation, de l’eau, pourriture ;
- Intempéries ;
- Manque de traitement et de protection du bois ;
- Tassement, construction médiocre ;

Les évolutions si l’entretien n’est pas effectué au plus vite :

- Pertes de planches, treillis affaiblis, dommages aux pneumatiques des véhicules ;
- Perte de madriers et plateelage ;
- Corrosion des parties métalliques ;
- Pertes des parties en bois par l’action des moisissures et des insectes (termites) ;
- Effondrement local de la maçonnerie.

Méthodes

Réparer les assemblages desserrés ou manquants

Les assemblages de madriers les plus courants sont les clous et les boulons. Ceux-ci se relâchent sous la circulation et doivent être contrôlés fréquemment. Lorsqu’ils sont partis ou rouillés ils doivent être remplacés.

a/ Les assemblages boulonnés

La tige du boulon doit avoir un contact étroit avec le trou foré. Les rondelles doivent être assez épaisses et de diamètre suffisamment grand pour que le bois ne se délite par lorsque le boulon est serré.
b/ Les assemblages cloués

Les clous sont une source d’ennuis fréquents, particulièrement lorsque l’on utilise le mauvais modèle ou la mauvaise longueur. Ils se relâchent dans le bois des tabliers, ils peuvent aussi être arrachés par l’effet de succion des pneumatiques et endommager ces derniers.

Il faut examiner le revêtement des tabliers au passage du trafic pour déceler des mouvements. Il faut enlever tous les clous relâchés. Reclouer dans des endroits différents (pas dans les anciens trou de clouage) en utilisant des clous dont la longueur est égale à trois fois l’épaisseur du revêtement. Il faut forer un avant-trou si les planches ont tendances à fendre lorsque les clous sont enfoncés. Le diamètre de perçage des avant-trous doit être légèrement inférieur au diamètre des clous. Pour améliorer la résistance des clous dont la tige est irrégulière, par exemple :

- Des clous à sillons annulaires, ou
- Des clous à sillons en spirale

Sur les ponts métalliques, les boulons à frictions ne se relâchent, en général, pas. Les autres boulons peuvent se relâcher et devraient être serrés en utilisant une clé dynamométrique réglés selon les consignes de l’ingénieur.

Les rivets relâchés seront chauffés avec soin avec un chalumeau oxy-acétylènique jusqu’à obtenir une couleur rouge sang. Ils seront ensuite martelés en utilisant des faces creuses qui s’adaptent au rivet chauffé et une masse. Il faudra prendre soin de ne pas surchauffer le rivet (jaune clair) ou le métal environnant.

a/ Les planches en long

- Extraire tous les clous, enlever les planches défectueuses et nettoyer la zone du tablier aux surfaces de contact ;

Ne pas utiliser de bois défectueux, présentant, par exemple :

- Des courbures ;
- Des angles ;
- Des torsions ;
- Des flaches ;
- Trop de nœuds.

b/ Planches du platelage

- Il faut enlever les clous et soulever les planches en long et les planches du platelage en ayant soin d’éviter d’endommager les solives ;
- Examiner la surface des solives pour déceler les détériorations ou les défauts. Les solives atteintes de pourrissement devront être remplaçées ;
Couvrir la face supérieure des solives avec un feutre bitumineux, poser le nouveau revêtement de planches, bien séchées, et traitées avec un protecteur de bois, et clouer en place. Maintenir des vides de ventilation et de drainage entre es planches ;

Lorsque les planches de platelage sont en place, remettre les planches en long si elles sont en bon état. Dans le cas contraire remplacer celles-ci par des planches neuves bien séchées et traitées. Clouer en position respectant des joints décalés.

Peindre

La peinture des parties métalliques par l'équipe du pont est généralement limitée aux travaux de petite envergure, par exemple, la peinture des parapets et, de temps en temps, les poutres. Il faut s'assurer que soit effectué un travail de qualité.

Les étapes suivantes sont recommandées :

1- Nettoyer toutes les surfaces métalliques en enlevant la crasse, la poussière, les écaillles de rouille et la peinture qui n'adhère plus. Là où c'est possible, utiliser un chalumeau et ensuite frotter la surface avec une brosse métallique pour enlever toutes les particules détachées,

2- Appliquer une couche primaire à la brosse : bien étaler sur la surface métallique en s'assurant que la peinture couvre avec une pellicule régulière sans couture. Nettoyer les pinceaux à des intervalles réguliers pour éviter la saturation,

3- Laisser sécher la couche primaire (24 heures ou selon l'expérience locale),

4- Appliquer une couche intermédiaire (en utilisant une peinture de haute qualité, à base d'huile, de métal, de résine synthétique ou autre),

5- Laisser sécher complètement la couche intermédiaire,

6- Appliquer une couche de finition comme indiqué au point 4. La couleur de la couche intermédiaire et de la couche de finition devra être aussi brillante que possible pour une meilleure visibilité et une meilleure sécurité.

Préserver le bois

La protection du bois des madriers de structure ne peut être effectuée complètement et d'une manière fiable que par l'imprégnation sous pression par laquelle le liquide de protection est injecté profondément dans le bois. Lorsque le traitement sous pression ne peut pas être effectué, faire un traitement superficiel. Cette méthode n'a qu'une valeur très limitée et ne peut pas être considérée comme permanente, en particulier si le bois vient en contact avec le sol ou s'il est utilisé dans des climats humides.

On peut suggérer la procédure suivante en utilisant des vêtements et des gants de protection :

1- Appliquer le produit protecteur du bois avec une brosse à peinture,

2- S'assurer que le produit recouvre complètement la surface du bois ainsi que les extrémités, que toutes les fissures sont bien remplies. Faire pénétrer le produit en brossant. Aucune partie ne devra rester non traitée car les champignons pourraient alors pénétrer aisément,
3- Laisser sécher la première couche,
4- Effectuer une seconde application de la même manière,
5- Quand la surface du bois traité a été endommagée lors de la manutention, du transport, du percement des avant-trous ou du sciage, appliquer un traitement sur les surfaces exposées de la même manière que ci-dessus avant l’installation du pont,
6- Après le travail d’application, nettoyer tous les pinceaux et les récipients avec un solvant.

Laver tous les endroits où le produit de protection est entré en contact avec la peau

Refaire les joints de maçonnerie

Cette activité ne devrait concerner que les structures de maçonnerie en relativement bon état. Si la structure s’est tassé ou est en danger d’effondrement, on ne saurait recommander qu’une reconstruction complète.

- Nettoyer et gratter le mortier friable, la terre et la végétation des joints défectueux, en utilisant de l’air comprimé ou un jet d’eau ainsi que marteaux et burins ;
- Aux endroits où le joint doit être complètement rénové, la pierre (ou la brique) doit être déposée temporairement jusqu’à ce qu’un nouveau lit de mortier ait été mis en place ;
- Réaliser un mortier de sable et de ciment comme il se doit (1 partie ciment, 3 parties de sable) et n’ajouter que ce qu’il faut comme eau pour mettre le mortier en place ;
- Déposer le mortier dans le joint, en remplissant tout l’espace disponible, compacter avec un pilon de bois adapté. Ne pas utiliser le mortier qui est tombé à terre ;
- Lisser les joints avec un outil adapté (un morceau de tuyau de caoutchouc ou de plastique, ou un rond à béton courbe) ;
- La surface finale du mortier devra être en léger retrait par rapport à la surface de la pierre ou de la brique afin de réaliser une finition agréable ;
- Dans des conditions climatiques sèches, le mortier peut sécher rapidement. Il faut éviter cela en aspergeant les joint avec de l’eau avant la prise du mortier et jusqu’à ce que le mortier soit complètement durci. Autrement, couvrir la zone de travail avec des sacs de jute mouillés ou quelque chose de semblable ;
- Nettoyer les surfaces visibles des pierres ou des briques qui ont été salies par le mortier ou par l’eau de gâchage au cours du travail de telle sorte que le travail terminé puisse présenter un aspect satisfaisant ;
- Enlever l’excès de matériaux et laisser le chantier dans un état propre et d’ordre satisfaisant.

Fréquence d’intervention

Dès que détecté par les patrouilleurs.
Fiche N°5.9 – Défauts majeurs

Objectif

Tous les défauts majeurs doivent être portés à l’attention de, ou être examinés par l’Ingénieur ou l’Inspecteur en Ouvrage d’Art.

Cette fiche traite uniquement des réparations majeures les plus habituelles qui concernent le lit des cours d’eau ou l’érosion des rives :

- Enrochements ;
- Murs de soutènement ;
- Radiers anti-affouillement ;
- Gabions.

Pour chacun des défauts suivants, l’Ingénieur ou l’Inspecteur en Ouvrage d’Art doit être informé, doit enquêter et doit mettre en place un plan détaillé pour des remèdes appropriés :

- Altérations de madriers, fendillement ou attaques d’insectes ;
- Gonflement de la maçonnerie ;
- Béton ou maçonnerie fissurés ;
- Béton faïencé ;
- Béton alvéolé ;
- Tâches sérieuses de rouille ;
- Armatures ou câbles de précontraintes exposés ou corrodés ;
- Tâches humides sur le béton ;
- Structures métalliques sérieusement corrodées ;
- Structure métallique endommagées et/ou tordues ;
- Rivets, boulons ou autres assemblages de structure desserrés ;
- Tassement du tablier, des piles ou des culées ;
- Erosion nécessitant la pose de pieux ;
- Réparation sur des éléments de ponts métalliques.

Causes et évolutions

Erosion Le lit ou les rives du cours d’eau sont érodés

Les causes principales sont :

- Ecoulement rapide de l’eau ; sape du terrain non protégé des rives par le cours d’eau.

Les évolutions si l’entretien n’est pas effectué au plus vite :

- Sape et tassement ou disparition des fondations du pont et des remblais de la route.

Méthodes

Réparation de la voie d’eau au moyen :

- D’un enrochement ;
- Mur de soutènement de blocage de la maçonnerie ;
- Radier de fond de lit anti-affouillement ;
- Gabions.
Travaux préliminaires :

- Prévoir la main d’œuvre nécessaire pour le travail envisagé ;
- Avoir fait le plein du camion et s’être assuré de son bon état mécanique et vérifié les niveaux d’eau et d’huile ;
- Rasssembler le matériel, les outils et les matériaux nécessaires ;
- Les panneaux de signalisation, les barrières et les cônes doivent être disponibles et chargés sur le camion ou la remorque.

Mesures de sécurité :

Les travaux d’entretien des ponts peuvent être dangereux, particulièrement lorsque des parties normalement inaccessibles de l’ouvrage doivent être inspectées ou entretenues. Lorsque des échelles sont utilisées, il faut toujours observer des règles de sécurité suivantes :

- Il faut toujours inspecter une échelle avant de s’en servir ;
- Il ne faut utiliser une échelle que si elle est en bon état ;
- Il ne faut jamais peindre une échelle car cela peut cacher les défauts ;
- Il ne faut jamais utiliser une échelle portant une épissure ou allonger une échelle par une épissure ;
- Le haut de l’échelle doit toujours être bien appuyé sur ses deux montants ;
- Le bas de l’échelle doit reposer sur une base solide ;
- La place du pied de l’échelle la plus stable se situe à une distance de un tiers (1/3) à un quart (1/4) de sa longueur du mur ou de la poutre qui la soutient ;
- Lorsque l’on travaille à des hauteurs qui dépassent trois mètres au-dessus du sol, un deuxième ouvrier assurera la stabilité de la base de l’échelle, ou bien celle-ci sera attachée ;
- Il faut toujours faire face à l’échelle lorsque l’on Monte ou que l’on descend, car autrement, il est facile de perdre l’équilibre ;
- Ne jamais se pencher au-delà de la longueur du bras, car autrement, il est facile de perdre l’équilibre.

Mise en place de la signalisation temporaire.

Exécution des travaux :
Enrochement Cette activité peut être nécessaire au titre des mesures d’urgence pour remplir des zones de la berge en cours d’érosion sous le niveau de l’eau. Elle se limite aux petites zones de rive et là où l’eau est relativement peu profonde (jusqu’à 1,5 mètre).

Si c’est possible, préparer une zone de pose à peu près là où les blocs de pierre sont déposés.

Option1 : Utilisation de grosses pierres

Déposer les pierres les plus grosses dans les couches inférieures.

Déposer les couches en s’assurant que la construction reste stable.

Continuer à déposer des pierres jusqu’à ce que la rive du cours d’eau ait repris une forme satisfaisante.

Option2 : Dans les forts courants

Si l’on ne dispose pas de pierres, on pourra utiliser des sacs de jute ou de fort plastique remplis à moitié jusqu’aux deux tiers et fortement liés. Ils seront mis en place comme indiqué ci-dessus.

Mur de soutènement

On peut en construire pour réaliser le nez d’un remblai ou de courtes longueurs de rive. Il faut les construire lorsque la rivière est à sec et lorsque la hauteur du mur libre est limitée à un maximum d’environ 1,5 mètre. Si la rivière ne s’assèche pas, il sera nécessaire de construire un batardeau pour permettre le travail à sec.

Auparavant, il faut déterminer si le sol est assez ferme au niveau de la fondation en creusant des trous au niveau estimé. L’ingénieur devra inspecter et approuver les excavations avant que soit commencé le travail.

Creuser les fondations selon les plans.

Préparer un fond de fouille de niveau et le compacter jusqu’à ce qu’il soit ferme.

Etaler 5 cm de mortier (1 part de ciment, 6 parts de sable) ou une semelle de béton (1 part de ciment, 4 part de sable, 8 parts de granulats) pour obtenir une surface de travail propre et laisser durcir.

Utiliser un mortier (1 part de ciment, 4 parts de sable) pour tous les travaux de maçonnerie. Utiliser une caisse de mesure pour doser les proportions du mélange. N’ajouter que ce qu’il faut d’eau pour rendre le mortier apte à être travaillé.

Ne faire que la quantité de mortier utilisable en une heure.

Placer les pierres les plus larges à plat dans les couches inférieures sur un lit de mortier et remplir les vides avec des petites pierres et du mortier. Chaque pierre doit être fermement assise, mais les pierres ne doivent pas se toucher les unes les autres. Les joints de mortier auront une épaisseur de 1 à 4 cm.

Placer chacune des couches suivantes sur un lit de mortier en remplissant les vides comme ci-dessus.

Il faut construire les extrémités du mur en premier, afin d’établir les dimensions et le profil corrects. Dans le cas de longs murs, il faut scinder le travail en sections de 5 à 10 mètres de long pour faciliter la construction.

Utiliser un cordeau et un niveau à bulle pour contrôler l’alignement et le niveau de chacune des couches.

Lorsque la fondation est achevée, remblayer autour par couches successives en les damant jusqu’à ce qu’aucun tassement ne se produise.
Terminer le mur jusqu'à sa hauteur finale. Lorsqu'il est prévu des barbacanes, il faut les construire avec un tampon filtrant pour prévenir l'entraînement des matériaux fins (du béton maigre convient).

Couvrir l'ouvrage achevé avec des sacs mouillés au fur et à mesure de l'état d'avancement des travaux afin d'empêcher le mortier de sécher trop vite.

Remblayer l'arrière du mur de couches de gravier, de pierres concassées, de résidus de carrière ou autre matériaux assurant un bon drainage.

Radier anti-affouillement

La perte de matériaux de fond de lit suite à un écoulement rapide de l'eau au droit des piles, des culées et des murs de soutènement peut être décelée au mieux au moment des basses eaux ou lorsque la rivière est asséchées.

La zone affouillée devra être remplie à nouveau avec des pierres de 10 à 30 kg ou plus. La décision sur la taille des pierres doit être prise en tenant compte de la disponibilité locale.

Si la zone d'affouillement est asséchée :

1. Piqueter la zone autour de la pile où s’est produit l’affouillement,
2. Creuser jusqu’au niveau de l’affouillement le plus profond,
3. Déposer des cailloux dans l’excavation, en commençant par les pierres les plus petites pour les couches les plus profondes,
4. Remplir les interstices avec des pierres plus petites,
5. Continuer à travailler couche après couche jusqu’à ce que soit atteint le niveau normal du lit de la rivière. La couche supérieure devra être réalisée avec les pierres les plus grosses et présenter une surface plate au droit du niveau du lit de la rivière.

Si la zone d'affouillement est immergée

S’il est impossible de déposer le blocage en pierre en couches régulières du fait du courant, la zone d’affouillement peut être remplie avec du tout-venant pierreux.

1. Déterminer l’ampleur de l’affouillement, en sondant avec un fil lesté le lit de la rivière. Utiliser des perches ou des bouées de signalisation pour matérialiser l’étendue du travail nécessaire,
2. En utilisant des blocs de pierre comme ci-dessus, déposer du matériau pierreux dans l’excavation d’affouillement, soit depuis le pont, soit depuis une barge ou à partir de la rive, jusqu’à ce que la dépression soit remplie. Procéder à nouveau à un sondage du lit de la rivière pour déterminer l’avancement du travail.

Les gabions

Lorsqu'ils sont disponibles, les gabions peuvent être aussi utilisés comme structures de protection des rives des cours d'eau. Ils sont généralement faits avec des paniers de fil de fer galvanisé, quoique l'on puisse aussi les faire avec du grillage soudé, ou du grillage galvanisé ou du fil de fer tressé, selon les circonstances. Les paniers sont remplis à la main de roches et de pierres de 12 à 30 cm.

De cette manière, ils acquièrent une grande stabilité mais seront sujets à un léger tassement.

Les paniers pour les gabions sont en général livrés pliés à plat, complets avec un fil de fermeture de telle sorte que soit minimisé le volume à transporter.
Les fondations seront creusées à niveau et nettoyées comme pour une structure conventionnelle, avec enlèvement de tout matière non adapté, remplacement par un sol de bonne qualité, de pierre ou de gravier et compactage. Les paniers seront placés dans leur position finale.

Les paniers seront liés en utilisant les ligatures de fil de fer de 3 mm, en ficelant toutes les arêtes avec une double boucle tous les 15 cm. Le fil de ligature devra être tiré serré avec une paire de fortes pinces et assuré par de nombreuses boucles. Le gabion du centre devra être rempli à l'avance pour servir d’ancrage.

Les paniers liés entre eux seront déployés et attachés avec des liens et des piquets de manière à leur donner leur forme définitive.

Le remplissage devra être effectué à la main en utilisant des pierres dures et durables d’une dimension non supérieure à 250 mm mais pas inférieure à la taille des mailles. La meilleure fourchette de taille est de 125 à 200 mm.

Les paniers de 1 mètre de hauteur seront remplis au tiers de leur hauteur. Des liens intermédiaires seront alors mis en place et tendus avec des tendeurs de manière à garder les faces verticales régulières et sans bosses. On précédera à un nouveau cerclage aux deux tiers de la hauteur. Les paniers de 500 mm ne seront liés qu’à la moitié de leur hauteur. Les gabions de 250, 300 mm n’ont pas besoin de renforcement intérieur.

Les pierres seront entassées soigneusement jusqu’à 3 à 5 cm au-dessus du sommet des parois de la boîte de la manière à permettre un tassement. Des matériaux plus petits peuvent être utilisés pour remplir les vides sur la face supérieure, mais il faudra éviter l’utilisation excessive de petites pierres.

Les couvercles seront fermés et étendus serrés sur les pierres, en utilisant, avec précaution, des barres à mine, si c’est nécessaire. Les coins seront temporairement liés pour s’assurer que le filet couvre l’ensemble de la boîte. Le couvercle sera alors fermement lié au bord supérieur des parois, en enlevant des pierres si nécessaire pour que le couvercle ne soit pas tendu en excès.

Achèvement des travaux et enlèvement de la signalisation temporaire.

Moyens

Personnel :
- 1 contremaître ou chef d’équipe ;
- 1 chauffeur de camion ;
- 3 à 6 manœuvres ;
- 1 à 2 charpentiers ;
- 1 à 2 maçons ;
- 1 à 2 peintres ;
- 1 à 2 chaudronniers ;
- 1 à 2 ouvriers connaissant le béton ;
- 1 à 2 contrôleurs de circulation.

Matériel de mise en œuvre :
- 1 camion à plateau (équipé si possible, d’un treuil et d’un bras manipulateur) ;
- 1 compresseur avec marteau piqueur ;
- 1 ou 2 treuils ;
- 1 pompe à eau ;
- 1 bétonnière ;
- 1 chalumeau oxyacétylénique ;
- Des échelles télescopiques.

Outils
- Des pelles ;
- Des scies à main et électriques (pour le bois de charpente et le métal) ;
- Des râteaux ;
- Des barres à mine ;
- Des tournevis ;
- 50 mètres de corde ;
- 1 jeu d'outils de charpentier ,
- Des ciseaux ;
- Un fil à plomb ;
- Des pinces ;
- Des haches ;
- Des marteaux (de taille variables) ;
- Une lampe torche ;
- Des brouettes ;
- Des truelles ;
- Des clés ;
- Un jeu de crics ;
- Des mètres rubans ;
- Une règle ;
- Des balais ;
- Des brosses et des rouleaux de peinture ;
- Des serre-joints et des mèches à forer ;
- Des seaux ;
- Des brosses à main ;
- 1 niveau à bulle ;
- 1 scie à buches ;
- Des brosses métalliques ;
- Des structures d'échafaudages avec accessoires ;
- Des planches ou des panneaux d'échafaudage ;
- Des éléments métalliques de pont de secours ;
- Des queues à riveter ;
- Des masses ;
- 1 décapeur thermique (lampe à souder) ;
- Des grattoirs à peinture ;
- Des boisseaux à mesurer les granulats (équivalents pour un sac de ciment).

Matériaux
- Du ciment (à conserver à sec), des feuilles plastiques ;
- Des granulats à béton (sable et graviers) ;
- Des madriers ;
- Des clous, des vis, des boulons, des écrous, des rondelles ;
- De la peinture antirouille (utiliser des primaires au minium ou au chromate de zinc, ou équivalent), des peintures de finition pour le métal, le bois et le béton, et des solvants à peinture ;
- De la solution de créosote et coaltar (ou équivalent) pour protéger le bois ;
- Des cailloux ;
- De la pierre à maçoner ;
- Des paniers pour faire des gabions ;
- Du fil de fer de 3mm pour les attaches ;
- Des pieux en bois ;
- Des pierres pour réaliser les gabions ;
- Des sacs de jute ou en plastique ;
- Des produits chimiques pour combattre les termites (par exemple pentachlorophénol ou équivalent) ;
- Du feutre bitumineux ;
- De la craie ou des marques similaires.

Equipements de signalisation et sécurité.
8. Les Fiches Actions - Exploitation

8.1. Liste des fiches Exploitation

La thématique Exploitation couvre les fiches suivantes.

<table>
<thead>
<tr>
<th>Numéro Fiche</th>
<th>Intitulé</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°6.1</td>
<td>Intervention sur accident</td>
</tr>
<tr>
<td>N°6.2</td>
<td>Balisage</td>
</tr>
<tr>
<td>N°6.3</td>
<td>Balayage</td>
</tr>
<tr>
<td>N°6.4</td>
<td>Ramassage des déchets</td>
</tr>
<tr>
<td>N°6.5</td>
<td>Patrouillage</td>
</tr>
</tbody>
</table>
8.2. Exploitation - Fiches actions

Fiche N°6.1 - Intervention sur accident

Objectifs

Mise en sécurité de la zone où a eu lieu l’accident.
- Mise en sécurité des accidentés ;
- Alerté pour les autres usagers.

Méthode

Principe

Deux objectifs sont à atteindre :
- Porter assistance aux personnes en danger ;
- Mettre la zone en sécurité pour éviter le sur accident.

Accident léger

Pas d’immobilisation prolongée (moins de 15 min) des véhicules sur la chaussée.
- Mise en sécurité de la zone : balisage léger (cône, triangle de signalisation) ;
- Aide pour déplacer les véhicules qui gênent la circulation.

Accident grave

Immobilisation prolongée (plus de 15 min) sur la chaussée.
- Prévenir le centre de secours compétant (Pompier : composer le 18) ;
- Mise en sécurité de la zone : mise en place d’un balisage adapté à la situation (Fiche balisage) ;
- Aide au rétablissement de la circulation.

Délai d’intervention

Intervention d’urgence.

Sécurité

La signalisation de ces dangers, qui apparaissent brusquement, comporte généralement deux phases :
- Phase 1 : signalisation d’urgence, effectuée soit par la police ou la gendarmerie, soit par le gestionnaire de la voirie. Cette signalisation est constituée principalement par les véhicules d’intervention munis de gyrophares, et complétée éventuellement par une signalisation au sol constituée d’un panneau AK14 avec 3 feux de balisage et d’alerte synchronisés et de cônes K5a.
- Phase 2 : cette signalisation est ensuite remplacée par le dispositif complet. Le passage de la phase 1 à la phase 2 est fonction notamment de la durée du danger. On doit évidemment s’efforcer de réduire cette durée par une remise en état des lieux aussi rapide que possible.
Fiche N°6.2 - Balisage

Objectifs

La route peut comporter des anomalies présentant un danger (dégradations, chantiers, obstructions, accidents, etc.), il est nécessaire de mettre en place une signalisation temporaire pour garantir la sécurité de l'usager et des agents travaillant sur la chaussée.

Cette signalisation a pour vocation :
- d’informer l’usager ;
- de guider l’usager ;
- de convaincre l’usager de modifier son comportement pour l’adapter à la situation qui est inhabituelle.

Méthode

Principes

La pose et la dépose des signaux constituent un chantier en soi.

Les principes suivants sont à respecter :
- la signalisation doit rester cohérente à tout moment de façon à remplir son rôle vis-à-vis des usagers et du personnel ;
- l’exposition des agents sur les zones circulées doit être minimisée ;
- les règles de tout chantier doivent être respectées, notamment quant à la signalisation des véhicules et des personnes.

Pose des signaux

En règle générale, les signaux sont mis en place dans l’ordre où les usagers les rencontrent.

S’il n’est pas possible de les implanter en une seule opération, les panneaux seront d’abord disposés à plat sur l’accotement, puis dressés une fois l’approvisionnement terminé.

On s’assure, lors de la pose, que chaque signal est parfaitement visible (végétation, zone d’ombre, dispositif de retenue, support, virage, sommet de côte, etc.).

Un masquage de la signalisation permanente est effectué si nécessaire.

Dans les situations d’urgence, il importe prioritairement de mettre en place une signalisation de position suffisante, puis une signalisation d’approche minimale.

Dépose des signaux

La signalisation temporaire doit être déposée ou masquée dès qu’elle cesse d’être utile.

S’il y a lieu de rétablir (ou d’établir) une signalisation permanente à l’issue du chantier, il faut le faire lors de la dépose de la signalisation temporaire.

Les signaux doivent en général être enlevés dans l’ordre inverse de la pose normale.
Moyens

Entretien courant
Les panneaux de signalisation temporaire doivent être régulièrement nettoyés et réparés si nécessaire.

Bon usage

Principe d’adaptation :
La signalisation temporaire doit être adaptée aux circonstances qui s’imposent.

Principe de cohérence :
On peut être amené par la signalisation temporaire à donner des indications différentes de celles de la signalisation permanente ; les panneaux de signalisation permanente devront être masqués.

Principe de valorisation :
Pour conserver toute sa valeur, la signalisation doit avant tout être crédible.

Principe de lisibilité et de concentration :
Pour être visibles et lisibles, les panneaux doivent :
- avoir des dimensions et des caractéristiques réglementaires ;
- rester en nombre limité ;
- être implantés judicieusement ;
- être propre et en bon état.

Principe de prudence :
Toujours réfléchir avant d’agir.

Délai d’intervention

Intervention d’urgence.

Sécurité

Signalisation :
- Vitesse limitée ;
- Interdiction de doubler ;
- Déviation.
Fiche N°6.3 – Balayage

Objectifs

Assurer la propreté (balayage et lavage) de l’ensemble de l’infrastructure :

- Voirie ;
- Trottoirs ;
- Bordures ;
- Ilots.

Méthode

<table>
<thead>
<tr>
<th>Dégradation</th>
<th>Dépôts de matériaux sur la chaussée ou dans les caniveaux gênant l’évacuation des eaux. Dépôt de déchets divers sur les trottoirs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuel</td>
<td>Décoller les dépôts plus ou moins adhérents, puis balayage.</td>
</tr>
<tr>
<td>Mécanique</td>
<td>Programmation de l’intervention de la balayeuse / balayeuse-aspiratrice.</td>
</tr>
</tbody>
</table>

Moyens

Entretien courant

Manuel :

- Pelles, balais, curette, brouette, fourgon permettant l’évacuation des produits.

Entretien spécialisé

Nettoyage haute pression.

- Intervention de la balayeuse aspiratrice travaillant sous surveillance des agents de nettoyage.

Délai d’intervention

- Intervention régulière et programmée.

Sécurité

Signalisation :

- Vitesse limitée.
- Interdiction de doubler.
Fiche N°6.4 – Ramassage des déchets

Objectifs

Récupération, gestion et traitement des déchets collectés le long du réseau.

Méthode

Classification des déchets :

- Les déchets inertes : un déchet est estimé inerte dès lors que l'on considère que son potentiel polluant par rapport à l'environnement est à peu près nul ;
- Les déchets banals : un déchet est dit « banal » dès lors qu'il peut être traité par les mêmes procédés que ceux utilisés par les ordures ménagères ;
- Les déchets spéciaux : sont considérés comme spéciaux tous les déchets qui doivent être traités par d'autres procédés que ceux utilisés pour les ordures ménagères.

Dans le domaine routier, l'interprétation de la classification des déchets permet de déterminer leur devenir en fonction des nuisances et pollutions qu'ils peuvent apporter à l'environnement.

Les textes en vigueur définissent une classification pour chaque type de déchets (tableau ci-après).

Moyens

Entretien courant Moyen humain :

- 1 chef d’équipe ;
- 1 à 2 ouvriers ;
- 1 chauffeur de camion.

Moyen matériel : camion, pelles, pioches, balais, raclette.

Bon usage

Les déchets de fauchage Maintenir et améliorer des pratiques de fauchage.

Il pourrait être envisagé une ou deux coupes annuelles à partir du début du mois d’août, sans broyer l'herbe, suivies de l’enlèvement de l'herbe fauchée avec parallèlement des pratiques spécifiques de fauchage, ce qui permettrait un maintien —voire un accroissement— de la biodiversité des accotements.

Les déchets de fauchage pourraient être valorisés par la fermentation méthanique pour la production de biogaz riche en méthane.
Les résidus de taille et d'élagage

Composter.

L'établissement d'un programme annuel d'élagage permettrait de favoriser les négociations avec les exploitants de plates-formes de compostage pour les conditions d'acceptation des résidus ligneux broyés (syndicats, agriculteurs, communes, ...).

Récupérer l'énergie. La filière chauffage au bois déchiqueté permet d'alimenter épisodiquement un système fuel existant.

Les déchets de balayage des chaussées

Les déchets de balayage sont pollués par les hydrocarbures et les métaux lourds. Les particules minérales de ces déchets fixent 83 à 92 % de la pollution totale en DCO, 82 à 99 % des hydrocarbures totaux et 80 à 100 % de plomb.

Les déchets des usagers

Hormis les déchets de poubelles, les services ramassent régulièrement des encombrants et des déchets ménagers sur les dépendances, notamment avant les campagnes de fauchage. Ces volumes ne sont pas connus mais représentent de forts tonnages.

Trier les déchets.

Sensibiliser les usagers au respect de l'environnement.

Eviter la distribution de prospectus, souvent jetés le long de l'infrastructure.

Débit d'intervention

Nettoyage régulier tous les 2 mois.

Sécurité

Signalisation de chantier :
- panneau de limitation de vitesse ;
- panneau travaux ;
- des cônes ;
- panneau J2.

EPI :
- baudrier ;
- chaussures de sécurité ;
- gants.
Fiche N°6.5 - Patrouillage

Objectifs
Par un passage régulier sur le réseau routier, le patrouillage a pour objectif principal de repérer et de traiter au plus vite tout événement qui pourrait avoir un impact négatif sur la sécurité des usagers.

Méthode
Patrouiller, c'est surveiller de manière régulière le réseau afin de :

- repérer et consigner dans un document (main courante) les événements, les situations ou les dégradations qui pourraient nuire à la sécurité des usagers et à l’écoulement du trafic ;
- déclencher les interventions d’urgence (à réaliser dans la demi-journée) ;
- effectuer les interventions qui ne nécessitent pas de moyens importants (enlèvement d’un obstacle facilement déplacable, mise en place d’une signalisation d’alerte pour des situations présentant une gêne ou un risque pour l’usager) ;
- proposer les suites à donner en leur donnant un degré d’urgence.

Les fréquences minimales de patrouille sont les suivantes :

- réseau à faible niveau de service (Réseau II et III) : 1 fois par mois ;
- réseau à fort niveau de service (Réseau I) : 1 fois par semaine.

Itinéraire de patrouille :

- la patrouille s’effectue sur une demi-journée et correspond à une longueur maximale de patrouillage de l’ordre de 50 km ;
- les sens de parcours seront alternés à chaque patrouille ;
- on s’assurera que les itinéraires ne soient pas toujours patrouillés par le même agent.

Moyens

Entretien courant
Véhicule de patrouille :
Un véhicule utilitaire (fourgonnette ou fourgon) permettant d’embarquer le matériel suivant :

- Panneau AK14 classe 2 (4) ;
- Cônes (6) ;
- Piquet de chantier (10) ;
- Pelle ;
- Balai ;
- Masse ;
- Boîte à outil (petit outillage courant) ;
- 1 sac de produit absorbant ;
- 1 seau d’enrobé à froid ;
- 1 bombe de peinture.
En cas d’accident lié à la voirie (défaut d’entretien normal : lorsque l’opération d’entretien qui n’a pas été effectuée aurait dû raisonnablement être envisagée par le maître d’ouvrage), la responsabilité du Département peut être recherchée.

Il appartient à l’exploitant de prouver qu’il a accompli les tâches qui lui incombent, d’où l’importance de disposer d’une organisation de travail formalisée.

Il appartient dès lors à l’agent, lors de ses tournées de surveillance du réseau, de prendre soin de formaliser en détail, dans le document approprié, les constats et la nature des interventions relatives aux différents événements qu’il observe.